
An Open Guide to Data Structures and Algorithms 

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.





An Open Guide to Data 
Structures and Algorithms 

PAUL W. BIBLE AND LUCAS MOSER 

PALNI PRESS 

INDIANAPOLIS,  INDIANA 



An Open Guide to Data Structures and Algorithms by Paul W. Bible and Lucas Moser is 
licensed under a Creative Commons Attribution 4.0 International License, except 
where otherwise noted. 

https://creativecommons.org/licenses/by/4.0/


Contents 

Publisher's Note vii 

Acknowledgements viii 

1.   Algorithms, Big-O, and Complexity 1 

2.   Recursion 20 

3.   Sorting 60 

4.   Search 119 

5.   Linked Lists 138 

6.   Stacks and Queues 158 

7.   Hashing and Hash Tables 171 

8.   Search Trees 218 

9.   Priority Queues 236 

10.   Dynamic Programming 270 

11.   Graphs 297 

12.   Hard Problems 315 

Contributors 341 





Publisher's Note 

This textbook was peer-reviewed, copyedited, and published 
through the Private Academic Library Network of Indiana (PALNI) 
PALSave Textbook Creation Grants Program, which is funded by 
the Lilly Endowment Inc. For more information about the PALSave: 
PALNI Affordable Learning Program, visit the PALSave website. 

Use the left-hand contents menu to navigate, or the green 
bar at the bottom of the page to page forward and back. 

If you have comments, suggestions, or corrections for this 
textbook, please send them to palsave@palni.edu. 

Publisher's Note  |  vii

https://lillyendowment.org/
https://palsave.palni.org/
mailto:palsave@palni.edu
https://lillyendowment.org/
https://lillyendowment.org/
https://lillyendowment.org/


Acknowledgements 

We would like to thank Edward Mandity for serving as the project 
manager for the textbook creation process. We would also like to 
thank Amanda Hurford with the PALNI team for working with us 
when we encountered challenges along the way. We owe a great 
debt to our reviewers, Dr. Joshua Kiers and Dr. Aaron Boudreaux, for 
their helpful suggestions and key insights that drastically improved 
our initial draft. We would like to also thank Matthew Furber for 
offering graphic design advice as well as introducing us to our 
fabulous illustrator, Mia M. Scarlato. Additionally, we would like 
to thank our department chair, Dr. Matt DeLong, for his constant 
support of our efforts to drive learning and equity through the 
creation of this open-access textbook. We also wish to thank all 
members of Marian University’s Department of Mathematical and 
Computational Sciences in the School of Science and Mathematics 
for the awesome discussions of research, pedagogy, and inclusive 
instruction, not to mention the fellowship and friendship. 

Paul W. Bible would like to thank his wonderful wife, Dr. 
Colleen Doçi. Her constant love and support made this happen. 

Lucas Moser would like to thank his wife and kids for 
supporting him in his endeavors as an educator. 

viii  |  Acknowledgements



1.  Algorithms, Big-O, and 
Complexity 

Learning Objectives 

After reading this chapter you will… 

• be able to define algorithms and data structures. 
• be able to describe how this study will differ from 

prior academic studies. 
• be able to describe how the size of the input to a 

procedure impacts resource utilization. 
• use asymptotic notation to describe the scalability 

of an algorithm. 

Introduction 

As a student of computer science, you have already accomplished 
a broad array of programming tasks. In order to fully understand 
where we are going, let us first consider where we have been. We 
will start by analyzing a programming exercise from an introductory 
class or textbook. Consider a function that counts the occurrences 
of a particular character x within a string s. 
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With regard to learning a programming language, this 
exercise serves many purposes. In order to solve this problem, you 
must first understand various features of a language’s syntax: 

• Variables are units of data that allow us to store intermediate 
results. 

• Iteration is a means of systematically visiting each element in a 
sequence. 

• Conditionals allow us to choose whether to execute a 
particular set of statements. 

• Functions allow us to encapsulate logic and reuse it elsewhere. 

Individually, each of these concepts is neither interesting 
nor impactful. The real power in computation comes from 
combining these into meaningful solutions, and in that combination 
lies the purpose of this text. Moving forward, we will refer to this 
combination of elements as synthesis. 

Synthesis is something we learn to do through the study 
of data structures and algorithms. These are known and well-
researched solutions. This text will require us to learn the patterns 
and trade-offs inherent in those existing solutions. However, there 
is a blunt truth underlying this course of study: you will likely never 
implement these algorithms or data structures again. This leads to 
the obvious question of “Why study them in the first place?” The 
answer lies in the imminent transition from skills to synthesis. 

Synthesis is hard, regardless of your field of study. 
Arithmetic, algebra, and geometry are relatively easy compared to 
engineering. Performing at a piano recital is not the same as 
composing the music. Basic spelling and grammar are not sufficient 
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for writing a novel. Writing a conditional or loop is inherently 
different than creating software. There is one major difference: 
arithmetic, piano, and grammar all have utility outside of synthesis. 
There is no utility in this world for conditional statements and loops 
if you cannot apply them to solve new problems. 

For many students, this transition from programming skills 
to synthesis of solutions will require significant effort. It is likely 
that you have experienced nothing like it before. For that reason, 
we choose to “stand on the shoulders of giants” to see how others 
have transformed simple components into elegant solutions. This 
will likely require us to memorize much of what we see. You may 
even, from time to time, be asked to recall specific details of a data 
structure or algorithm. However, if your study of these solutions 
ends there, you have certainly missed the mark. 

Consider another analogy. Bootstrapping is a computing 
technique employed when a computer loads a program. Rather than 
loading all instructions needed to execute a task, the computer 
loads only a small number of critical instructions, and those in turn 
load other instructions. In a sense, the program starts out with only 
a seed containing the most crucial, fundamental, and useful pieces 
of information. That seed does not directly solve any problem but 
rather solves a problem by acquiring other instructions that can. 
The study of data structures and algorithms will bootstrap your 
problem-solving skills. You may or may not explicitly use anything 
you learned, but the ideas you have been exposed to will give you a 
starting point for solving new and interesting problems later. 

What Is a Data Structure? 

Data encountered in a computer program is classified by type. 
Common types include integers, floating point numbers, Boolean 
values, and characters. Data structures are a means of aggregating 
many of these scalar values into a larger collection of values. 
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Consider a couple of data structures that you may have encountered 
before. The index at the end of a book is not simply text. If you 
recognize it as structured data, it can help you find topics within 
a book. Specifically, it is a list of entries sorted alphabetically. Each 
entry consists of a relevant term followed by a comma-separated list 
of page numbers. Likewise, a deck of playing cards can be viewed 
as another data structure. It consists of precisely 13 values for 4 
different suits, resulting in 52 cards. Each value has a specific 
meaning. If you wish to gain access to a single card, you may cut the 
deck and take whatever card is on top. 

With each data structure encountered, we consider a set 
of behaviors or actions we want to perform on that structure. For 
example, we can flip over the card on the top of a deck. If we 
combine this with the ability to sequentially flip cards, we can define 
the ability to find a specific card given a deck of unsorted playing 
cards. Describing and analyzing processes like these is the study of 
algorithms, which are introduced in the next section and are the 
primary focus of this text. 

What Is an Algorithm? 

An algorithm is an explicit sequence of instructions, performed on 
data, to accomplish a desired objective. Returning to the playing 
card example, your professor may ask you to hand him the ace 
of spades from an unsorted deck. Let us consider two different 
procedures for how to accomplish this task. 
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A B 

1.Spread the cards out on a table. 
2.Hand him the ace of spades. 

1.Orient the deck so that it is facing up. 
2.Inspect the value of the top card. 
3.Is the card the ace of spades? 
a.If yes, then hand him the card. 
b.If no, then discard the card and r

The above is a meaningful illustration and represents our 
first encounter with the challenge of synthesis introduced in the 
first section of this chapter. When someone new to computer 
science is asked to find a card from a deck, the procedure more 
often resembles A rather than B. Whether working with cards in a 
deck or notes from class, our human brains can have the ability to 
process a reasonably sized set of unstructured data. When looking 
for a card in a deck or a topic in pages of handwritten notes, 
informal procedures like A work fine. However, they do have 
limitations. Procedure A lacks the precision necessary to guide a 
computer in solving the problem. 

Algorithms and Implementations 

From a design perspective, it makes sense to formulate these 
instructions as reusable procedures or functions. The process of 
reimagining an algorithm as a function or procedure is typically 
referred to as implementation. Once implemented, a single well-
named function call to invoke a specific algorithm provides a 
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powerful means of abstraction. Once the algorithm is written 
correctly, future users of the function may use the implementation 
to solve problems without understanding the details of the 
procedure. In other words, using a single high-level procedure or 
function to run an algorithm is a good design practice. 

Expression in a Programming Language 

If you are reading this book, you have at least some experience with 
programming. What if you are asked to express these procedures 
using a computer program? Converting procedure A is daunting 
from the start. What does it mean to spread the deck out on the 
table? With all “cards” strewn across a “table,” we have no 
programmatic way of looking at each card. How do you know when 
you have found the ace of spades? In most programming languages 
there is no comparison that allows you to determine if a list of items 
is equal to a single value. However, procedure B can (with relative 
ease) be expressed in any programming language. With a couple of 
common programming constructs (lists, iteration, and conditionals), 
someone with even modest experience can typically express this 
procedure in a programming language. 

The issue is further complicated if we attempt to be too 
explicit, providing details that obscure the desired intent. What if 
instead of saying “Then hand him the card,” you say, “Using your 
index finger on the top of the card and your thumb on the bottom, 
apply pressure to the card long enough to lift the card 15 
centimeters from the table and 40 centimeters to the right to hand 
it to your professor.” In this case, your instructions have become 
more explicit, but at the cost of obfuscating your true objective. 
Striking a balance between explicit and sufficient requires practice. 
As a rule, pay attention to how others specify algorithms and 
generally lean toward being more explicit than less. 
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Analysis of Algorithms 

Constraints 

How much work does it require to find the ace of spades in a 
single deck of cards? How many hands do you need? An algorithm 
(such as procedure B) will always be executed in the presence of 
constraints. If you are searching for the ace of spades, you would 
probably like your search to terminate in a reasonable amount of 
time. Thirty seconds to find the card is probably permissible, but 
four hours likely is not. In addition, finding the card in the deck 
requires manipulation of the physical cards with your hands. If you 
had to perform this task with one hand in your pocket, you likely 
would have to consider a different algorithm. 

Constraints apply in the world of software as well. Even 
though modern CPUs can perform operations at an incredible rate, 
there is still a very real limit to the operations that can be performed 
in a fixed time span. Computers also have a fixed amount of memory 
and are therefore space constrained. 

Scalability 

A primary focus in the study of algorithms is what happens when we 
no longer have a single deck of 52 cards. What if we have a thousand 
decks and really bad luck (all 1,000 aces of spades are at the back 
of the deck)? No human hands can simultaneously hold that many 
cards, and even if they could, no human is going to look at 51,000 
other cards to check for an ace of spades. This illustrates the desire 
for algorithms to be scalable. If we start with a problem of a certain 
size (say, a deck of 52 cards), we particularly care about how much 
harder it is to perform the procedure with two decks. With a large 

Algorithms, Big-O, and Complexity  |  7



enough input, any algorithm will eventually become impractical. In 
other words, we will eventually reach either a space constraint or a 
time constraint. It is therefore necessary that realistic problem sizes 
be smaller than those thresholds. 

Measuring Scalability 

Measuring scalability can be challenging. It seems obvious (but 
worth noting) that a given algorithm for sorting integers may be 
able to sort 10 trillion values on a distributed supercomputer but 
will likely not terminate on a mobile phone in a reasonable amount 
of time. This means the simple model for measuring scalability 
(namely, how long an algorithm takes to run) is insufficient. 
Comparing algorithms without actually running them on a physical 
machine would be useful. This is the main topic of this section. 

If we wish to analyze algorithm performance without 
actually executing it on a computer, we must define some sort of 
abstraction of a modern computer. There are a number of models 
we could choose to work with, but the most relevant for this text is 
the uniform cost model. With this model, we choose to assume that 
any operation performed takes a uniform amount of time. In many 
real-world scenarios, this may likely be inaccurate. For example, 
in every coding framework and every machine architecture, 
multiplication is always faster than division. So why is it acceptable 
to assume a uniform cost? When learning algorithms and data 
structures for the first time, assuming uniform cost usually gives 
us a sufficiently granular impression of runtime while also retaining 
ease of understanding. This allows us to focus on the synthesis and 
implementation of algorithms and deal with more precise models 
later. 

One last aspect of modeling is that we need not measure 
all operations in all cases. It is quite common, for example, to only 
consider comparison operations in sorting algorithms. This is 
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justifiable in many cases. Consider comparing one algorithm or one 
implementation to another. We may be able to employ some clever 
tricks to marginally improve performance. However, for most 
general-purpose sorting algorithms, the number of comparisons is 
the most meaningful operation to count. In some cases, it may make 
sense to count the number of times an object was referenced or how 
many times we performed addition. Keep in mind, the important 
part of algorithm analysis is how many more operations we have to 
do each time we increase the size of our input. Fortunately, we have 
a notation that helps us describe this growth. In the next section, 
we will formally define asymptotic notation and observe how it is 
helpful in describing the performance of algorithms. 

Algorithm Analysis 

When comparing algorithms, it is typically not sufficient to describe 
how one algorithm performs for a given set of inputs. We typically 
want to quantify how much better one algorithm performs when 
compared to another for a given set of inputs. 

To describe the cost of a software function (in terms of 
either time or space), we must first represent that cost using a 
mathematical function. Let us reconsider finding the ace of spades. 
How many cards will we have to inspect? If it is the top card in the 
deck, we only have to inspect 1. If it is the bottom card, we will have 
to inspect 52. Immediately, we start to see that we must be more 
precise when defining this function. When analyzing algorithms, 
there are three primary cases of concern: 

• Worst case: This function describes the most comparisons we 
may have to make given the current algorithm. In our ace of 
spades example, this is represented by the scenario when the 
ace of spades was the bottom card in the deck. If we wish to 
represent this as a function, we may define it as f(n) = n. In 
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other words, if you have 52 cards, the most comparisons you 
will have to perform will be 52. If you add two jokers and now 
have 54 cards, you now have to perform at most 54 
comparisons. 

• Average case: This function describes what we would typically 
have to do when performing an algorithm many times. For 
example, imagine your professor asked you to first find the ace 
of spades, then 2 of spades, then 3 of spades, until you have 
performed the search for every card in the deck. If you left the 
card in the deck each round, some cards would be near the top 
of the deck and others would be near the end. Eventually, each 
iteration would have a cost function of roughly f(n) = n/2. 

• Amortized case: This is a challenging case to explain early in 
this book. Essentially, it arises whenever you have an expensive 
set of operations that only occur sometimes. We will 
encounter this in the resizing of hash tables as well as the 
prerequisites for Binary Search. 

You may wonder why best-case scenarios are not 
considered. In most algorithms, the best case is typically a small, 
fixed cost and is therefore not very useful when comparing 
algorithms. 

Consider a very literal interpretation of a uniform cost 
model for our ace of spades example. We would then have three 
different operations: 

• compare (C): comparing a card against the desired value 
• discard (D): discarding a card that does not match 
• return (R): handing your professor the card that does match 

Under this model, our cost function will be the following 
under the worst-case scenario, where n is the number of cards in 
the deck: 
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f(n) = nC + nD + R. 

Because we consider all costs to be uniform, we can set C, D, and R 
all to some constant. To make our calculations easier, we will choose 
1. Our cost function is now slightly easier to read: 

f(n) = 1n + 1n + 1 

f(n) = 2n + 1. 

This implies that, regardless of how many cards we have in our deck, 
we have a small cost of 1 (namely, the amount of time to return the 
matching card). However, if we add two jokers, we have increased 
our deck size by 2, thus increasing our cost by 4. Notice that the 
first element in our function is variable (2n changes as n changes), 
but the second is fixed. As our n gets larger, the coefficient of 2 on 
2n has a much greater impact on the overall cost than the cost to 
return the matching card. 

Big-O Notation 

Imagine now that another student in your class developed a 
separate algorithm, which has a cost function of m(n) = n2 + 1. The 
question is now, Which algorithm performs better than the other 
as we add more cards to the deck? Consider the graph of f and m 
below, where a shallower slope represents a slower growth rate. 
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Figure 1.1 

Note that when n = 1, your classmate’s algorithm performs 
fewer operations than our original. However, for all n values that 
come after 2, the cost of our original algorithm wins outright. 
Although this does give us some intuition about the performance 
of algorithms, it would behoove us to define more precise notation 
before moving forward. 

Asymptotic notation gives us a way of describing how the 
output of a function grows as the inputs become bigger. We will 
address three different notations as part of this chapter, but the 
most important is Big-O. Most often stylized with a capital O, this 
notation enables us to classify cost functions into various well-
known sets. Formally, we define Big-O as follows: 

f(n) = O(g(n)) if f(n) ≤ cg(n) for some c > 0 and all n > n0. 

While this is a very precise and useful definition, it does 
warrant some additional explanation: 
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• O(g(n)) is a set of all functions that satisfy the condition that 
they are “less than” some constant multiplied by g(n). While it 
is conventional to say that f(n) = O(g(n)), it is more accurate to 
read this as “f(n) is a member of O(g(n)).” 

• When determining whether a function is a member of O(g(n)), 
any positive real number may be chosen for c. 

• The most important aspect of this notation is that the 
inequality holds when n is really big. As a result, asserting that 
it holds for relatively small n values is not necessary. We can 
choose an n0. Then for all values greater than it, our inequality 
must hold. 

Through some basic algebra, we can determine that f(n) is 
O(n), and m(n) is O(n2): 

f(n)=2n + 1 and g(n) = n, then we can show f(n) = O(n) as 
follows: 

2n + 1≤ cn 

2n + 1≤ 3n 

1≤ n 

n≥ 1the original definition holds when n0 = 1. 

m(n)=n2+1 and g(n) = n2, then we can show m(n) = O(n2) 

n2 + 1≤ cn2 

n2 + 1≤ 2n2 
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1≤ n2 

n2≥ 1 

n≥ 1the original definition holds when n0 = 1. 

Notably, it is possible to show that f(n) = O(n2). However, it 
is not true that m(n) = O(n). Showing this has been left as an exercise 
at the end of the chapter. 

Another Example 

Someone new to algorithm analysis may start to draw conclusions 
that cost functions with higher degree polynomials are 
unequivocally slower (or worse) than those with lower degree 
polynomials. Consider the following two cost functions and what 
they look like when n is less than 10: 

   s(n) = 64n 

t(n) = n2. 
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Figure 1.2 

As the size of your input (n in this case) gets larger, higher 
degree terms will always have more influence over the growth of 
the function than large coefficients on smaller degree terms. It is 
important though that we do not immediately conclude that the 
algorithm for function s is inherently better than or more useful 
than the algorithm for function t. Notice that for small values of 
n (specifically, those smaller than 64), algorithm t actually 
outperforms s. There are real-world scenarios where input size is 
known to be small, and an asymptotically less-than-ideal algorithm 
may actually be preferred due to other desirable attributes. 

Big-O notation captures the asymptotic scaling behavior 
of an algorithm. This means the resource costs grow as n goes to 
infinity. It is seen as a measure of the “complexity” of an algorithm. 
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In this text, we may refer to the “time complexity” of an algorithm, 
which means its Big-O worst-case scaling behavior. If one algorithm 
runs in O(n) time and the other in O(n2) time, we may say that 
the O(n) algorithm is an order of magnitude faster than the O(n2) 
algorithm. The same terms may also be applied to assessments of 
the space usage of an algorithm. 

Other Notations 

The remainder of this book (and most books for that matter) 
typically uses Big-O notation. However, other sources often 
reference Big-Theta notation and a few also use Big-Omega. While 
we will not use either of these extensively, you should be familiar 
with them. Additional notations outside these three do exist but are 
encountered so infrequently that they need not be addressed here. 

Big-Omega Notation 

Whereas Big-O notation describes the upper bound on the growth 
of a function, Big-Omega notation describes the lower bound on 
growth. If you describe Big-O notation as “some function f will never 
grow faster than some other function g,” then you could describe 
Big-Omega as “some function f will never grow more slowly than g.” 
Herein lies the explanation of why Big-Omega does not see much 
usage in real-world scenarios. In computer science, upper bounds 
are typically more useful than lower bounds when considering how 
an algorithm will perform on a large scale. In other words, if an 
algorithm performs better than expected, we are pleasantly 
surprised. If it performs worse, it may take a long time, if ever, to 
complete. The formal definition of Big-Omega is as follows: 
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f(n) = Ω(g(n)) if c * g(n) ≤ f(n) for some c > 0 and all n > 
n0. 

Big-Theta Notation 

Big-Theta of a function, stylized as θ(g(n)), has more utility in 
routine analysis than Big-Omega. Recall that f(n) = 2n+1 is both O(n) 
and O(n2). This is true because the growth of the function has an 
upper bound of n as well as n2. Although it is possible to reference 
different functions, it is common to choose the slowest-growing 
g(n) such that g(n) is an upper bound on function f. We can see that 
Big-O may not be as precise as we would like, and this can result in 
some confusion. Therefore, in this book, we will be interested in the 
smallest g(n) that can serve to bound the algorithm at O(g(n)). As a 
result of the ambiguity of Big-O, some computer scientists prefer to 
use Big-Theta. In this notation, we choose to specify both the upper 
and lower bounds on growth by using a single function g(n). This 
removes confusion and allows for a more precise description of the 
growth of a function. The definition of Big-Theta is as follows: 

f(n) = θ(g(n)) if c1 * g(n) ≤ f(n) ≤ c2 * g(n) for some c1 > 0, 
c2 > 0 and n > n0. 

It should be noted that not all algorithms can be described 
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using Big-Theta notation, as it requires that an algorithm be 
bounded from above and below by the same function. 

 

Exercises 

1. Consider a new task for a deck of cards. Someone 
has cut the deck (split it into two parts), flipped one part 
upside down, then shuffled the deck back together. As a 
result, we currently have one deck that has some cards 
facing up, others facing down, and no discernable pattern 
to predict which is up or down. Write a description 
(algorithm) for how to put all cards face up in the deck. Be 
precise enough for your procedure to be reproducible but 
not so verbose that the reader loses track of the core 
components of the algorithm. 

2
. Write a cost function (using a uniform cost model) 

that describes the work necessary to reorient a deck of n 
cards. If your deck is suddenly m cards larger, how much 
additional work must be completed? 

3
. For each function below, specify whether it is O(n), 

O(n2), or both. 

a. f(n) = 8n + 4n 
b. f(n) = n(n+1)/2 
c. f(n) = 12 
d. f(n) = 1000n2 
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2.  Recursion 

Learning Objectives 

After reading this chapter you will… 

• understand the features of recursion and recursive 
processes. 

• be able to identify the components of a recursive 
algorithm. 

• be able to implement some well-known recursive 
algorithms. 

• be able to estimate the complexity of recursive 
processes. 

• understand the benefits of recursion as a problem-
solving strategy. 

Introduction 

Recursion is a powerful tool for computation that often saves the 
programmer considerable work. As you will see, the benefit of 
recursion lies in its ability to simplify the code of algorithms, but 
first we want to better understand recursion. Let’s look at a simple 
nonrecursive function to calculate the product of 2 times a 
nonnegative integer, n, by repeated addition: 
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This function takes a number, n, as an input parameter 
and then defines a procedure to repeatedly add 2 to a sum. This 
approach to calculation uses a for-loop explicitly. Such an approach 
is sometimes referred to as an iterative process. This means that 
the calculation repeatedly modifies a fixed number of variables that 
change the current “state” of the calculation. Each pass of the loop 
updates these state variables, and they evolve toward the correct 
value. Imagine how this process will evolve as a computer executes 
the function call multiplyBy2(3). A “call” asks the computer to 
evaluate the function by executing its code. 

When the process starts, sum is 0. Then the process 
iteratively adds 2 to the sum. The process generated is equivalent to 
the mathematical expression (2 + 2 + 2). The following table shows 
the value of each variable (i, sum, and n) at each time step: 

Figure 2.1 
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Recursive Multiplication 

Like iterative procedures, recursive procedures are a means to 
repeat certain operations in code. We will now write a recursive 
function to calculate the multiplication by 2 as a sequence of 
addition operations. 

The recursive formulation follows the mathematical 
intuition that 2 * n = 2 + 2 * (n − 1) = 2 + 2 + 2 * (n − 2) … and 
so on until you reach 2 + 2 + 2 + … 2 * 1. We can visualize this 
process by considering how a computer might evaluate the function 
call recursiveMultiplyBy2(3). The evaluation process is similar 
conceptually to a rewriting process. 

recursiveMultiplyBy2(3) -> 2 + 
recursiveMultiplyBy2(2) 

-> 2 + 2 + recursiveMultiplyBy2(1) 
-> 2 + 2 + 2 + recursiveMultiplyBy2(0) 
-> 2 + 2 + 2 + 0 
-> 2 + 2 + 2 
-> 6 

This example demonstrates a few features of a recursive 
procedure. Perhaps the most recognizable feature is that it makes 
a call to itself. We can see that recursiveMultiplyBy2 makes a call 
to recursiveMultiplyBy2 in the else part of the procedure. As an 
informal definition, a recursive procedure is one that calls to itself 
(either directly or indirectly). Another feature of this recursive 
procedure is that the action of the process is broken into two parts. 
The first part directs the procedure to return 0 when the input, n, is 
equal to 0. The second part addresses the other case where n is not 
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0. We now have some understanding of the features of all recursive 
procedures. 
Features of Recursive Procedures 

• A recursive procedure makes reference to itself as a 
procedure. This self-call is known as the recursive call. 

• Recursive procedures divide work into two cases based on the 
value of their inputs. 

◦ One case is known as the base case. 
◦ The other case is known as the recursive case or 

sometimes the general case. 

Recursive Exponentiation 

Let us now consider another example. Just as multiplication can be 
modeled as repeated addition, exponentiation can be modeled as 
repeated multiplication. Suppose we wanted to modify our iterative 
procedure for multiplying by 2 to create an iterative procedure for 
calculating powers of 2 for any nonnegative integer n. How might 
we modify our procedure? We might simply change the operation 
from + (add) to * (multiply). 

This procedure calculates a power of 2 for any nonnegative 
integer n. We changed not only the operation but also the starting 
value from 0 to 1. 

We can also write this procedure recursively, but first let us 
think about how to formulate this mathematically by looking at an 
example. Suppose we want to calculate 23: 
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23=2 * 22 

=2 * 2 * 21 

=2 * 2 * 2 * 20 

=2 * 2 * 2 * 1=8. 

The explicit 20 is shown to help us think about the 
recursive and base cases. From this example, we can formulate two 
general rules about exponentiation using 2 as the base: 

20=1 

2n=2 * 2(n−1). 

Now let’s write the recursive procedure for this function. 
Try to write this on your own before looking at the solution. 

The Structure of Recursive Algorithms 

As mentioned above, recursive procedures have a certain structure 
that relies on self-reference and splitting the input into cases based 
on its value. Here we will discuss the structure of recursive 
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procedures and give some background on the motivation for 
recursion. 

Before we begin, recall from chapter 1 that a procedure can 
be thought of as a specific implementation of an algorithm. While 
these are indeed two separate concepts, they can often be used 
interchangeably when considering pseudocode. This is because the 
use of an algorithm in practice should be made as simple as possible. 
Often this is accomplished by wrapping the algorithm in a simple 
procedure. This design simplifies the interface, allowing the 
programmer to easily use the algorithm in some other software 
context such as a program or application. In this chapter, you can 
treat algorithm and procedure as the same idea. 

Some Background on Recursion 

The concept of recursion originated in the realm of mathematics. 
It was found that some interesting mathematical sequences could 
be defined in terms of themselves, which greatly simplified their 
definitions. Take for example the Fibonacci sequence: 

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … }. 

This sequence is likely familiar to you. The sequence starts 
at 0, 0 is followed by 1, and each subsequent value in the sequence 
is derived from the previous two elements in the sequence. This 
seemingly simple sequence is fairly difficult to define in an explicit 
way. Let’s look a bit closer. 

Based on the sequence above, we see the following 
equations are true: 
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F0 = 0 

F1 = 1 

F2 = 1 

F3 = 2 

F4 = 3. 

Using this formulation, we may wish to find a function 
that would calculate the nth Fibonacci number given any positive 
integer, n: 

Fn = ?. 

Finding such a function that depends only on n is not trivial. 
This also leads to some difficulties in formally defining the 
sequence. To partially address this issue, we can use a recursive 
definition. This allows the sequence to be specified using a set of 
simple rules that are self-referential in nature. These recursive rules 
are referred to in mathematics as recurrence relations. Let’s look at 
the recurrence relation for the Fibonacci sequence: 

F0=0 

F1=1 
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Fn=Fn−1 + Fn−2. 

This gives a simple and perfectly correct definition of the 
sequence, and we can calculate the nth Fibonacci number for any 
positive integer n. Suppose we wish to calculate the eighth 
Fibonacci number. We can apply the definition and then repeatedly 
apply it until we reach the F0 and F1 cases that are explicitly defined: 

F8=F8−1 + F8−2 

=F7 + F6 

=(F7−1 + F7−2) + (F6−1 + F6−2) 

…and so on. 

This may be a long process if we are doing this by hand. This could 
be an especially long process if we fail to notice that F7−2 is the same 
as F6−1. 

A Trade-Off with Recursion 

Observing this process leads us to another critical insight about 
recursive processes. What may be simple to describe may not be 
efficient to calculate. This is one of the major drawbacks of 
recursion in computing. You may be able to easily specify a correct 
algorithm using recursion in your code, but that implementation 
may be wildly inefficient. Recursive algorithms can usually be 
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rewritten to be more efficient. Unfortunately, the efficiency of the 
implementation comes with the cost of losing the simplicity of the 
recursive code. Sacrificing simplicity leads to a more difficult 
implementation. Difficult implementations allow for more bugs. 

An Aside on Navigating the Efficiency-Simplicity 
Trade-Off 

In considering the trade-off between efficiency and simplicity, 
context is important, and there is no “right” answer. A good 
guideline is to focus on correct implementations first and optimize 
when there is a problem (verified by empirical tests). Donald Knuth 
references Tony Hoare as saying “premature optimization is the 
root of all evil” in programming. This should not be used as an 
excuse to write inefficient code. It takes time to write efficient code. 
“I was optimizing the code” is a poor excuse for missed deadlines. 
Make sure the payoff justifies the effort. 

Recursive Structure 

The recursive definition of the Fibonacci sequence can be divided 
into two parts. The first two equations establish the first two values 
of the sequence explicitly by definition for n = 0 and n = 1. The last 
equation defines Fibonacci values in the general case for any integer 
n > 1. The last equation uses recursion to simplify the general case. 
Let’s rewrite this definition and label the different parts. 
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Base Cases 

F0 = 0 

F1 = 1 

Recursive Case 

Fn = Fn−1 + Fn−2 

Recursive algorithms have a similar structure. A recursive 
procedure is designed using the base case (or base cases) and a 
recursive case. The base cases may be used to explicitly define the 
output of a calculation, or they may be used to signal the end of a 
recursive process and stop the repeated execution of a procedure. 
The recursive case makes a call to the function itself to solve a 
portion of the original problem. This is the general structure of 
a recursive algorithm. Let’s use these ideas to formulate a simple 
algorithm to calculate the nth Fibonacci number. Before we begin, 
let’s write the cases we need to consider. 
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Base Cases 

n = 0 the algorithm should return 0 

n = 1 the algorithm should return 1 

Recursive Case 

any other n the algorithm returns the sum of 
Fibonacci(n − 1) and Fibonacci(n − 2) 

Now we define the recursive algorithm to calculate the nth 
Fibonacci number. 

In this algorithm, conditional if-statements are used to 
select the appropriate action based on the input value of n. If the 
value is 0 or 1, the input is handled by a base case, and the function 
directly returns the appropriate value. If another integer is input, 
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the recursive case handles the calculation, and two more calls to 
the procedure are executed. You may be thinking, “Wait, for every 
function call, it calls itself two more times? That doesn’t sound 
efficient.” You would be right. This is not an efficient way to 
calculate the Fibonacci numbers. We will revisit this idea in more 
detail later in the chapter. 

Before we move on, let us revisit the two examples from 
the introduction, multiplication and exponentiation. We can define 
these concepts using recurrence relations too. We will use the 
generic letter a for these definitions. 

Multiplication by 2 

Base Case 

a0 = 0 

Recursive Case 

an = 2 + an−1 
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Powers of 2 

Base Case 

a0 = 1 

Recursive Case 

an = 2 * an−1 

Looking back at the recursive functions for these algorithms, we see 
they have a shared structure that uses conditionals to select the 
correct case based on the input, and the base cases and recursive 
cases handle the calculation by ending the chain of recursive calls 
or by adding to the chain of calls respectively. In the next section, 
we will examine some important details of how a computer executes 
these function definitions as dynamic processes to generate the 
correct result of a calculation. 
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Recursion and the Runtime Stack 

Thus far, we have relied on your intuitive understanding of how 
a computer executes function calls. Unless you have taken a 
computer organization or assembly language course, this process 
may seem a little mysterious. How does the computer execute the 
same procedure and distinguish the call to recursiveMultiplyBy2(3) 
from the call to recursiveMultiplyBy2(2) that arises from the 
previous function call? Both calls utilize the same definition, but one 
has the value 3 bound to n and the other has the value 2 bound to n. 
Furthermore, the result of recursiveMultiplyBy2(2) is needed by the 
call to recursiveMultiplyBy2(3) before a value may be returned. This 
requires that a separate value of n needs to be stored in memory for 
each execution of the function during the evaluation process. Most 
modern computing systems utilize what is known as a runtime stack 
to solve this problem. 

A stack is a simple data structure where data are placed on 
the top and removed from the top. Like a stack of books, to get to a 
book in the middle, one must first remove the books on top. We will 
address stacks in more detail in a later chapter, but we will briefly 
introduce the topic. Here we will examine how a runtime stack is 
used to store the necessary data for the execution of a recursive 
evaluation process. 

The Runtime Stack 

We will give a rough description of the runtime stack. This should 
be taken as a cartoon version or caricature of the actual runtime 
stack. We encourage you to supplement your understanding of this 
topic by exploring some resources on computer organization and 
assembly language. The real-world details of computer systems can 
be as important as the abstract view presented here. 
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The runtime stack is a section of memory that stores data 
associated with the dynamic execution of many function calls. 
When a function is called at runtime, all the data associated with 
that function call, including input arguments and locally defined 
variables, are placed on the stack. This is known as “pushing” to 
the stack. The data that was pushed onto the stack represents 
the state of the function call as it is executing. You can think of 
this as the function’s local environment during execution. We call 
this data stored on the stack a stack frame. The stack frame is a 
contiguous section of the stack that is associated with a specific call 
to a procedure. There may be many separate stack frames for the 
same procedure. This is the case with recursion, where the same 
function is called many times with distinct inputs. 

Once the execution of a function completes, its data are no 
longer needed. At the time of completion, the function’s data are 
removed from the top of the stack or “popped.” Popping data from 
the runtime stack frees it, in a sense, and allows that memory to be 
used for other function calls that may happen later in the program 
execution. As the final two steps in the execution of the procedure, 
the function’s stack frame is popped, and its return value (if the 
function returns a value) is passed to the caller of the function. 
The calling function may be a “main” procedure that is driving the 
program, or it may be another call to the same function as in 
recursion. This allows the calling function to proceed with its 
execution. Let’s trace a simple recursive algorithm to better 
understand this process. 

A Trace of a Simple Recursive Call 

Suppose we are running a program that makes a call to 
recursiveMultiplyBy2(3). Consider the simple program below. 
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The computer executes programs in a step-by-step 
manner, executing one instruction after another. In this example, 
suppose that the computer begins execution on line 8 at the start 
of the main procedure. As main needs space to store the resulting 
value, we can imagine that a place has been reserved for main’s 
result variable and that it is stored on the stack. The following figure 
shows the stack at the time just before the function is called on line 
8. 

Figure 2.2 

When the program reaches our call to 
recursiveMultiplyBy2(3), the n variable for this call is bound with 
the 3 value, and these data are pushed onto the stack. The figure 
below gives the state of the stack just before the first line of our 
procedure begins execution. 
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Figure 2.3 

Here the value of 3 is bound to n and the execution 
continues line by line. As this n is not 0, the execution would 
continue to line 5, where another recursive call is made to 
recursiveMultiplyBy2(2). This would push another stack frame onto 
the stack with 2 bound to n. This is shown in the following figure. 

Figure 2.4 

You can imagine this process continuing until we reach 
a call that would be handled by the base case of our recursive 
algorithm. The base case of the algorithm acts as a signal that ends 
the recursion. This state is shown in the following figure: 
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Figure 2.5 

Next, the process of completing the calculation begins. The 
resulting value is returned, and the last stack frame is popped from 
the top of the stack. 

Figure 2.6 

Once the call for n = 0 gets the returned value of 0, it may 
then complete its execution of line 5. This triggers the next pop 
from the stack, and the value of 2 + 0 = 2 is returned to the prior call 
with n = 2. Let’s look at the stack again. 
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Figure 2.7 

As we can see, the chain of calls is unwinding as the results 
are calculated in turn. This process continues. As the results are 
calculated and stack frames are popped, it should be clear that less 
memory is being used by the program. It should be noted that this 
implies a memory cost for deep chains of recursion. Finally, the last 
recursive call completes its line 5, and the value is returned to the 
main function as shown below. 

Figure 2.8 

Now the main function has the result of our recursive 
algorithms. The value 6 is bound to the “result” variable, and when 
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the program executes the print command, “6” would appear on the 
screen. This concludes our trace of the dynamic execution of our 
program. 

Why Do We Need to Understand the Runtime 
Stack? 

You may now be thinking, “This seems like a lot of detail. Why do 
we need to know all this stuff?” There are two main reasons why 
we want you to better understand the runtime stack. First, it should 
be noted that function calls are not free. There is overhead involved 
in making a call to a procedure. This involves copying data to the 
stack, which takes time. The second concern is that making function 
calls, especially recursive calls, consumes memory. Understanding 
how algorithms consume the precious resources of time and space 
is fundamental to understanding computer science. We need to 
understand how the runtime stack works to be able to effectively 
reason about memory usage of our recursive algorithms. 

More Examples of Recursive Algorithms 

We have already encountered some examples of recursive 
algorithms in this chapter. Now we will discuss a few more to 
understand their power. 

Recursive Reverse 

Suppose you are given the text string “HELLO,” and we wish to print 
its letters in reverse order. We can construct a recursive algorithm 
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that prints a specific letter in the string after calling the algorithm 
again on the next position. Before we dive into this algorithm, let’s 
explain a few conventions that we will use. 

First, we will treat strings as lists or arrays of characters. 
Characters are any symbols such as letters, numbers, or other type 
symbols like “*,” “+,” or “&.” Saying they are lists or arrays means 
that we can access distinct positions of a string using an index. 
For example, let message be a string variable, and let its value be 
“HELLO.” If we access the elements of this array using zero-based 
indexing, then message[0] is the first letter of the string, or “H.” 
We will be using zero-based indexing (or 0-based indexing) in this 
textbook. Switching between 0-based and 1-based indexing should 
be easy, although it can be tricky and requires some thought when 
converting complex algorithms. Next, saying that a string is an array 
is incorrect in most programming languages. An array is specifically 
a fixed-size, contiguous block of memory designed to store multiple 
values of the same type. Most programming languages provide a 
string type that is more robust. Strings are usually represented as 
data structures that provide more functionality than just a block 
of memory. We will treat strings as a data structure that is like an 
array with a little more functionality. For example, we will assume 
that the functionality exists to determine the size of a string from 
its variable in constant time or O(1). Specifically, we will use the 
following function. 

Back to the algorithm, we will define the base and recursive 
cases. The base case that terminates the algorithm will be reached 
by the algorithm when the position to print is greater than or equal 
to the length of the string. The recursive case will call the algorithm 
for the next position and then print the letter at the current position 
after the recursive call. 
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Calling recReverse(“HELLO”, 0) should give the following 
text printed to the screen: 

O 
L 
L 
E 
H 
This demonstrates that the recursive algorithm can print 

the characters of a string in reverse order without using excessive 
index manipulation. Notice the order of the print statement and 
the recursive call. If the order of lines 7 and 8 were switched, the 
characters would print in their normal order. This algorithm 
resembles another recursive algorithm for visiting the nodes of a 
tree data structure that you will see in a later chapter. 

Wrappers and Helper Functions for Recursion 

You may have noticed that recReverse(“HELLO”, 0) seems like an 
odd interface for a function that reverses a string. There is an extra 
piece of state, the value 0, that is needed anytime we want to 
reverse something. Starting the reverse process in the middle of the 
string at index 3, for example, seems like an uncommon use case. 
In general, we would expect that reversing the string will almost 
always be done for the entire string. To address this problem, we 
will make a helper function. Let’s create this helper function so we 
can call the reverse function without giving the 0 value. 
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Now we may call reverse(“HELLO”), which in turn, makes 
a call that is equivalent to revReverse(“HELLO”, 0). This design 
method is sometimes called wrapping. The recursive algorithm is 
wrapped in a function that simplifies the interface to the recursive 
algorithm. This is a very common pattern for dealing with recursive 
algorithms that need to carry some state of the calculation as input 
parameters. Some programmers may call reverse the wrapper and 
recReverse the helper. If your language supports access specifiers 
like “public” and “private,” you should make the wrapper a “public” 
function and restrict the helper function by making it “private.” This 
practice prevents programmers from accidentally mishandling the 
index by restricting the use of the helper function. 

Greatest Common Divisor 

An algorithm for the greatest common divisor (GCD) of two integers 
can be formulated recursively. Suppose we have the fraction 16/
28. To simplify this fraction to 4/7, we need to find the GCD of 16 
and 28. The method known as Euclid’s algorithm solves this problem 
by dividing two numbers, taking their remainder after division, and 
repeating the division step with one of the numbers and the 
remainder. Given two integers a and b, the algorithm proceeds 
according to this general process: 

1. Take two integers a and b, and let a be larger than b. 
2. Find the remainder of a / b, and let that number be r. 
3. If r is 0, b is the GCD; otherwise, repeat the process with b and 

r in place of a and b in step 1. 
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The equations below illustrate this process. Here, let a 
equal 28, and let b equal 16: 

a / b 

28 / 16=1 with remainder 12 

16 / 12=1 with remainder 4 

12 / 4=3 with remainder 0 

Since the remainder is 0, the GCD is 4. 

For the fraction 16/28, dividing the denominator and the 
numerator by 4 gives the simplified fraction 4/7. This is illustrated 
below: 

(16 / 4) / (28 / 4) = 4 / 7. 

Before we start writing the algorithm, let us think about the 
base case and the recursive case. What signals the end of recursion? 
If the remainder of a divided by b is zero, this means that b is 
the greatest common divisor. This should be our base case. With 
any other inputs, the algorithm should make a recursive call with 
updated inputs. Let us examine one way to implement this 
algorithm. We will use the keyword mod to mean the remainder of 
two integers. For example, we will take the expression 7 mod 3 to 
be evaluated to the value 1. The keyword mod is a shortened version 
of the word “modulo,” which is the operation that calculates integer 
remainders after division. 
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This process will continue to reduce a and b in sequence 
until the remainder is 0, ultimately finding the greatest common 
divisor. This provides a good example of a recursive numerical 
algorithm that has a practical use, which is for simplifying fractions. 

Recursive Find Minimum 

Finding the minimum value in a collection of numbers can be 
formulated as a recursive algorithm. Let us use an array of integers 
for this algorithm. Our algorithm will use the helper and wrapper 
pattern, and it will use an extra parameter to keep track of the 
current minimum value. Let us begin by specifying the core 
algorithm as a helper function. Here, as in recReverse, we assume a 
length function can provide the length of the array: 

For this algorithm, our base case occurs when the recursive 
process reaches the last position of the array. This signals the end 
of recursion, and the currentMin value is returned. In the recursive 
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case, we compare the value of the current minimum with the value 
at the current position. Next, a recursive call is made that uses the 
appropriate current minimum and increases the position. 

Recursive Algorithms and Complexity 
Analysis 

Now that we have a better understanding of recursive algorithms, 
how can their complexity be evaluated? Computational complexity 
is usually evaluated in terms of time complexity and space 
complexity. How does the algorithm behave when the size of the 
input grows arbitrarily large with respect to runtime and memory 
space usage? Answering these questions may be a little different for 
recursive algorithms than for some other algorithms you may have 
seen. 

A Warm-Up, Nonrecursive Example: Powers of 2 

Let us begin with the nonrecursive power-of-2 algorithm from the 
beginning of the chapter reprinted here: 

For this algorithm, we observe a loop that starts at 1 and 
continues to n. This means that we have a number of steps roughly 
equal to n. This is a good clue that the time complexity is linear or 
O(n). For an n equal to 6, we could expand this procedure to the 
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following sequence of 5 multiplications: 2 * 2 * 2 * 2 * 2 * 2. If we 
added 1 to n, we would have 6 multiplications for an n of 7. Actually, 
according to the algorithm as written, the correct sequence for an n 
equal to 6 would be 1 * 2 * 2 * 2 * 2 * 2 * 2. When n is 6, this sequence 
has exactly n multiplications counting the first multiplication by 1. 
This could be optimized away, but it is a good demonstration that 
with or without the optimization the time complexity would be O(n). 
As a reminder, O(n − 1) is equivalent to O(n). The time complexity 
O(n) is also known as linear time complexity. 

For this algorithm, what is the space complexity? First, let 
us ask how many variables are used. Well, space is needed for the 
input parameter n and the product variable. Are any other variables 
needed? In a technical sense, perhaps some space would be needed 
to store the literal numerical values of 1 and 2, but this may depend 
on the specific computer architecture in use. We ignore these issues 
for now. That leaves the variables n and product. If the input 
parameter n was assigned the value of 10, how many variables would 
be needed? Just two variables would be needed. If n equaled 100, 
how many variables would be needed? Still, only two variables would 
be needed. This leads us to the conclusion that only a constant 
number of variables are needed regardless of the size of n. 
Therefore, the space complexity of this algorithm is O(1), also known 
as constant space complexity. 

In summary, this iterative procedure takes O(n) time and 
uses O(1) space to arrive at the calculated result. Note: This analysis 
is a bit of a simplification. In reality, the size of the input is 
proportional to log(n) of the value, as the number n itself is 
represented in approximately log2(n) bits. This detail is often 
ignored, but it is worth mentioning. The point is to build your 
intuition for Big-O analysis by thinking about how processes need 
to grow with larger inputs. 
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Recursive Powers of 2 

Now let us consider the power-of-2 recursive algorithm from earlier 
and analyze its complexity. 

To analyze the complexity of this algorithm, let us examine 
some example input values. For an n equal to 1, the algorithm begins 
with recursivePowerOf2(1). This call evaluates 2 * 
recursivePowerOf2(1). This expression then becomes 2 * 1, which is 
2. For an n equal to 3, we have the following sequence: 

recursivePowerOf2(3) -> 2 * 
recursivePowerOf2(2) 

-> 2 * 2 * recursivePowerOf2(1) 
-> 2 * 2 * 2 * recursivePowerOf2(0) 
-> 2 * 2 * 2 * 1 

So for an n equal to 3, we have three multiplications. From 
this expansion of the calls, we can see that this process ultimately 
resembles the iterative process in terms of the number of steps. We 
could imagine that for an n equal to 6, recursivePowerOf2(6) would 
expand into 2 * 2 * 2 * 2 * 2 * 2 * 1 equivalent to the iterative process. 
From this, we can reason that the time complexity of this recursive 
algorithm is O(n). This general pattern is sometimes called a linear 
recursive process. 

The time complexity of recursive algorithms can also be 
calculated using a recurrence relation. Suppose that we let T(n) 
represent the actual worst-case runtime of a recursive algorithm 
with respect to the input n. We can then write the time complexity 
for this algorithm as follows: 
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T(0) = 1 

T(n) = 1 + T(n − 1). 

This makes sense, as the time complexity is just the cost of 
one multiplication plus the cost of running the algorithm again with 
an input of n − 1 (whatever that may be). When n is 0, we must return 
the value 1. This return action counts as a step in the algorithm. 

Now we can use some substitution techniques to solve this 
recurrence relation: 

T(n)=1 + T(n − 1) 

=1 + 1 + T(n − 2) 

=2 + T(n − 2) 

=2 + 1 + T(n − 3) 

=3 + T(n − 3). 

Here we start to notice a pattern. If we continue this out to T(n − n) 
= T(0), we can solve the relationship: 

T(n)=n + T(n − n) 

=n + T(0) 
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=n + 1. 

We see that T(n) = n + 1, which represents the worst-case time 
complexity of the algorithm. Therefore, the algorithm’s time 
complexity is O(n + 1) = O(n). 

Next, let us analyze the space complexity. You may try to 
approach this problem by checking the number of variables used 
in the recursive procedure that implements this algorithm. 
Unfortunately, recursion hides some of the memory demands due 
to the way procedures are implemented with the runtime stack. 
Though it appears that only one variable is used, every call to the 
recursive procedure keeps its own separate value for n. This leads 
to a memory demand that is proportional to the number of calls 
made to the recursive procedure. This behavior is illustrated in the 
following figure, which presents a representation of the runtime 
stack at a point in the execution of the algorithm. Assume that 
recursivePowerOf2(3) has been called inside main or another 
procedure to produce a result, and we are examining the stack when 
the last call to recursivePowerOf2(0) is made during this process. 
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Figure 2.9 

The number of variables needed to calculate 
recursivePowerOf2(3) is proportional to the size of the input. The 
figure showing the call stack has a frame for each call starting with 
3 and going down to 0. If our input increased, our memory demand 
would also increase. This observation leads to the conclusion that 
this algorithm requires O(n) space in the worst case. 

Tail-Call Optimization 

In considering the two previous algorithms, we can compare them 
in terms of their time and space scaling behavior. The imperative 
powerOf2 implementation uses a loop. This algorithm has a time 
complexity of O(n) and a space complexity of O(1). The 
recursivePowerOf2 algorithm has a time complexity of O(n), but 
its space complexity is much worse at O(n). Fortunately, an 
optimization trick exists that allows recursive algorithms to reduce 
their space usage. This trick is known as tail-call optimization. If 
your language or compiler supports tail-call optimization, recursive 
algorithms can be structured to use the same amount of space 
as their corresponding iterative implementations. Actually, both 
algorithms would be considered iterative, as they iteratively update 
a fixed set of state variables. Let us examine a tail-call optimization 
example in greater detail. 

To fix our recursivePowerOf2 implementation’s space 
complexity issues, we will first slightly modify our algorithm. We 
will add a state variable that will hold the running product. This 
serves the same purpose as the product variable in our iterative loop 
implementation. 
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For this algorithm to work correctly, any external call 
should be made with product set to 1. This ensures that an exponent 
of n equal to 0 returns 1. This means it would be a good idea to wrap 
this algorithm in a wrapper function to avoid unnecessary errors 
when a programmer mistakenly calls the algorithm without product 
set to 1. This simple wrapper function is presented below: 

To understand how tail-call optimization works, let us 
think about what would happen on the stack when we made a 
call like recursivePowerOf2(1, 3) using our new algorithm (we will 
ignore the wrapper for this discussion). The stack without tail-call 
optimization would look like the following figure: 
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Figure 2.10 

The key observation of tail-call optimization is that when 
the recursive call is at the tail end of the procedure (in this case, 
line 5), no information is needed from the current stack frame. 
This means that the current frame can simply be reused without 
consuming more memory. The following figure gives an illustration 
of recursivePowerOf2(1, 3) after the first recursive tail-call in the 
execution process. 

Figure 2.11 

Using tail-call optimization, our new recursivePowerOf2 
algorithm has the same time complexity O(n) and space complexity 
O(1) as the loop-based iterative implementation. Keep in mind that 
tail-call optimization is a feature of either your interpreter or the 
compiler. You may wish to check if it is supported by your language 
(https://en.wikipedia.org/wiki/Tail_call#By_language). 
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Powers of 2 in O(log n) Time 

A clever algorithm is presented in Structure and Interpretation of 
Computer Programs (SICP, Abelson and Sussman, 1996) that 
calculates powers of any base in O(log n) time. Let us examine this 
algorithm to help us understand some recursive algorithms that are 
faster—or rather, scale better—than O(n) time. 

We will examine the same problem as above, calculating the 
nth power of 2. The key idea of this algorithm takes advantage of the 
fact that 2n = (2n/2)2 when n is even and 2 * 2n−1 when n is odd. To 
implement this algorithm, we must first define two helper functions. 
One function will square an input number, and the other function 
will check if a number is even. We will define them here using mod 
to indicate the remainder after division. 

After defining these two functions, we will consider the 
bases and recursive cases for which we need to account. If n is 0, the 
algorithm should return 1 according to the mathematical definition 
of any base value raised to an exponent of 0. This will be one of 
our cases. Next, if the n is even, we will square the result of a 
recursive call to the algorithm passing the value of n/2. This code 
is equivalent to our calculation of (2n/2)2. Lastly, for the odd case, 
we will calculate 2 times the result of a recursive call that passes 
the value of n − 1. This code handles the odd case equivalent to 2 
* 2n−1 and sets up the use of our efficient even exponent case. The 
algorithm is presented below: 
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Let us think about the process this algorithm uses to 
calculate 29. This process starts with a call to fastPowerOf2(9). Since 
9 is odd, we would multiply 2 * fastPowerOf2(8). This expression 
then expands to 2 * square(fastPowerOf2(4)). Let us look at this in 
more detail. 

fastPowerOf2(9)->2 * fastPowerOf2(8) 
->2 * square(fastPowerOf2(4)) 
->2 * square(square(fastPowerOf2(2))) 
->2 * 

square(square(square(fastPowerOf2(1)))) 
->2 * square(square(square(2 * 

fastPowerOf2(0)))) 
->2 * square(square(square(2 * 1))) 
->2 * square(square(4)) 
->2 * square(16) 
->2 * 256 
->512 

It may not be clear that this algorithm is faster than the 
previous recursivePowerOf2, which was bounded by O(n). 
Considering the linear calculation of 29 would look like this: 2 * 2 * 
2 * 2 * 2 * 2 * 2 * 2 * 2 with 9 multiplications. For this algorithm, 
we could start thinking about the calculation that is equivalent to 
2 * square(square(square(2 * 1))). Our first multiplication is 2 * 1. 
Next, the square procedure multiplies 2 * 2 to get 4. Then 4 is 
squared, and then 16 is squared for 2 more multiplications. Finally, 
we get 2 * 256, giving the solution of 512 after only 5 multiply 
operations. At least for an n of 9, fastPowerOf2 uses fewer multiply 
operations. From this, we could imagine that for larger values of 
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n, the fastPowerOf2 algorithm would yield even more savings with 
fewer total operations compared to the linear algorithm. 

Let us now examine the time complexity of fastPowerOf2 
using a recurrence relation. The key insight is that roughly every 
time the recursive algorithm is called, n is cut in half. We could 
model this as follows: Let us assume that there is a small constant 
number of operations associated with each call to the recursive 
procedure. We will represent this as c. Again, we will use the 
function T(n) to represent the worse-case number of operations for 
the algorithm. So for this algorithm, we have T(n) = c + T(n/2). Let us 
write this and the base case as a recurrence relation: 

T(0)=c 

T(n)=c + T(n/2). 

To solve this recurrence problem, we begin by making 
substitutions and looking for a pattern: 

T(n)=c + T(n/2) 

   =c + c + T(n/4) 

   =c + c + c + T(n/8). 

We are beginning to see a pattern, but it may not be 
perfectly clear. The key is in determining how many of those 
constant terms there will be once the expression of T(n/x) becomes 
1 or 0. Let us rewrite these terms in a different way: 
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T(n)=c + T(n/21) 

   =2c + T(n/22) 

   =3c + T(n/23). 

Now we seek a pattern that is a little clearer: 

T(n)=k * c + T(n/2k). 

So when will n/2k be 1? 
We can solve for k in the following equation: 

n/2k=1 

2k * (n/2k)=2k * 1 

n=2k. 

Now taking the log2 of each side gives the following: 

log2 n=k. 
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Now we can rewrite the original formula: 

T(n)=log2 n * c + T(1). 

According to our algorithm, with n equal to 1, we use the 
odd case giving 2 * fastPowerOf2(0) = 1. So we could reason that 
T(1) = 2c. Finally, we can remove the recursive terms and with a little 
rewriting arrive at the time complexity: 

T(n)=log2 n * c + T(1) 

=log2 n * c + 2c 

=c * (log2 n + 2). 

Therefore, our asymptotic time complexity is O(log n) 
Here we have some constants and lower-order terms that 

lead us to a time complexity of O(log n). This means that the scaling 
behavior of fastPowerOf2 is much, much better than our linear 
version. For reference, suppose n was set to 1,000. A linear 
algorithm would take around 1,000 operations, whereas an O(log n) 
algorithm would only take around 20 operations. 

As for space complexity, this algorithm does rely on a 
nested call that needs information from previous executions. This 
requirement is due to the square function that needs the result 
of the recursive call to return. This implementation is not tail-
recursive. In determining the space complexity, we need to think 
about how many nested calls need to be made before we reach a 
base case to signal the end of recursion. For a process like this, all 
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these calls will consume memory by storing data on the runtime 
stack. As n is divided each time, we will reach a base case after O(log 
n) recursive calls. This means that in the worst case, the algorithm 
will have O(log n) stack frames taking up memory. Put simply, its 
space complexity is O(log n). 

 

Exercises 

1. Write a recursive function like that of powerOf2 
called “pow” that takes a base and exponent variables and 
computes the value of base raised to the exponent power 
for any integer base >= 1 and any integer exponent >= 0. 

2
. The sequence {0, 1, 3, 6, 10, 15, 21, 28, … } gives the 

sequence of triangular numbers. 

a. Give a recursive definition of the triangular 
numbers (starting with n = 0). 

b. Give a recursive algorithm for calculating the 
nth triangular number. 

3
. Modify the recMin algorithm to create a function 

called recMinIndex. Your algorithm should return the 
index of the minimum value in the array rather than the 
minimum value itself. Hint: You should add another 
parameter to the helper function that keeps track of the 
minimum value’s index. 

4
. Write an algorithm called simplify that prints the 
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simplified output of a fraction. Have the procedure accept 
two integers representing the numerator and 
denominator of a fraction. Have the algorithm print a 
simplified representation of the fraction. For example, 
simplify(8, 16) should print “1 / 2.” Use the GCD algorithm 
as a subroutine in your procedure. 

5
. Implement the three powerOf2 algorithms 

(iterative, recursive, and fastPowerOf2) in your language 
of choice. Calculate the runtime of the different 
algorithms, and determine which algorithms perform best 
for which values of n. Using your data, create a “super” 
algorithm that checks the size of n and calls the most 
efficient algorithm depending on the value of n. 
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3.  Sorting 

Learning Objectives 

After reading this chapter you will… 

• understand the problem of sorting a set of numbers 
(or letters) in a defined order. 

• be able to implement a variety of well-known 
sorting algorithms. 

• be able to evaluate the efficiency and relative 
advantages of different algorithms given different 
input cases. 

• be able to analyze sorting algorithms to determine 
their average-case and worst-case time and space 
complexity. 

Introduction 

Applying an order to a set of objects is a common general problem 
in life as well as computing. You may open up your email and see 
that the most recent emails are at the top of your inbox. Your 
favorite radio station may have a top-10 ranking of all the new songs 
based on votes from listeners. You may be asked by a relative to 
put a shelf of books in alphabetical order by the authors’ names. All 
these scenarios involve ordering or ranking based on some value. 
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To achieve these goals, some form of sorting algorithm must be 
used. A key observation is that these sorting problems rely on a 
specific comparison operator that imposes an ordering (“a” comes 
before “b” in alphabetical order, and 10 < 12 in numerical order). As 
a terminology note, alphabetical ordering is also known as lexical, 
lexicographic, or dictionary ordering. Alphabetical and numerical 
orderings are usually the most common orderings, but date or 
calendar ordering is also common. 

In this chapter, we will explore several sorting algorithms. 
Sorting is a classic problem in computer science. These algorithms 
are classic not because you will often need to write sorting 
algorithms in your professional life. Rather, sorting offers an easy-
to-understand problem with a diverse set of algorithms, making 
sorting algorithms an excellent starting point for the analysis of 
algorithms. 

To begin our study, let us take a simple example sorting 
problem and explore a straightforward algorithm to solve it. 

An Example Sorting Problem 

Suppose we are given the following array of 8 values and asked to 
sort them in increasing order: 

Figure 3.1 

How might you write an algorithm to sort these values? 
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Our human mind could easily order these numbers from smallest 
to largest without much effort. What if we had 20 values? 200? We 
would quickly get tired and start making mistakes. For these values, 
the correct ordering is 22, 24, 27, 35, 43, 45, 47, 48. Give yourself 
some time to think about how you would solve this problem. Don’t 
consider arrays or indexes or algorithms. Think about doing it just 
by looking at the numbers. Try it now. 

Reflect on how you solved the problem. Did you use your 
fingers to mark the positions? Did you scan over all the values 
multiple times? Taking some time to think about your process may 
help you understand how a computer could solve this problem. 

One simple solution would be to move the smallest value 
in the list to the leftmost position, then attempt to place the next 
smallest value in the next available position, and so on until reaching 
the last value in the list. This approach is called Selection Sort. 

Selection Sort 

Selection Sort is an excellent place to start for algorithm analysis. 
This sort can be constructed in a very simple way using some 
bottom-up design principles. We will take this approach and work 
our way up to a conceptually simple sorting algorithm. Before we 
get started, let us outline the Selection Sort algorithm. As a 
reminder, we will use 0-based indexing with arrays: 

• Start by considering the first or 0 position of the array. 
• Find the index of the smallest value in the array from position 

0 to the end. 
• Exchange the value in position 0 with the smallest value (using 

the index of the smallest value). 
• Repeat the process by considering position 1 of the array (as 

the smallest value is now in position 0). 
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The algorithm works by repeatedly selecting the smallest 
value in the given range of the array and then placing it in its proper 
position along the array starting in the first position. With a little 
thought for our design, we can construct this algorithm in a way 
that greatly simplifies its logic. 

Selection Sort Implementation 

Let us start by creating the exchange function. Our exchange 
function will take an array and two indexes. It will then swap the 
value in the given positions within the array. For example, 
exchange(array, 1, 3) will take the value in position 1 and place it in 
position 3 as well as taking the value in position 3 and placing it 
in position 1. Let us look at what might happen by calling it on our 
previous array. 

Here is our previous array with indexes added: 

Figure 3.2 

After calling exchange(array, 1, 3), we get this: 
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Figure 3.3 

This function is the first tool we need to build Selection 
Sort. Let’s explore one implementation of this function. 

This function will do nothing if the indexes are identical. 
When we have separate indexes, the corresponding values in the 
array are exchanged. This evolves the state of the array by switching 
two values. In this implementation, we do not make any checks to 
see if an exchange could be made. It may be worth checking if the 
indexes are identical. It also may be worth checking if the indexes 
are valid (for example, between 0 and n − 1), but this exercise is left 
to the reader. 

Now we need another tool to help us “select” the next 
smallest value to put in its correct order. For this task, we need 
something that is conceptually the same as a findMin function. 
For our algorithms, we would need to make a few modifications 
to the regular findMin. The two additions we need to make are as 
follows: (1) We need to get the index of the smallest value, not just 
its value. (2) We want to search only within a given range. The last 
modification will let us choose the smallest value for position 0 and 
then choose the second smallest value for position 1 (chosen from 
positions 1 to n − 1). 

Let us look at one implementation for this algorithm. 
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For this algorithm, we can set any start coordinate and find 
the index of the smallest value from the start to the end of the array. 
This simple procedure gives us a lot of power, as we will learn. 

Now that we have our tools created, we can write Selection 
Sort. This leads to a simple implementation thanks to the design 
that decomposed the problem into smaller tasks. 

We now have our first sorting algorithm. This algorithm 
provides a great example of how design impacts the complexity 
of an implementation. Combining a few simple ideas leads to a 
powerful new tool. This practice is sometimes called encapsulation. 
The complexity of the algorithm is encapsulated behind a few 
functions to provide a simple interface. Mastering this art is the key 
to becoming a successful computing professional. Amazing things 
can be built when the foundation is functional, and good design 
removes a lot of the difficulty of programming. Try to take this 
lesson to heart. Good design gives us the perspective to program in 
a manner that is closer to the way we think. Context that improves 
our ability to think about problems improves our ability to solve 
problems. 
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Selection Sort Complexity 

It should be clear that the sorting of the array using Selection Sort 
does not use any extra space other than the original array and a few 
extra variables. The space complexity of Selection Sort is O(n). 

Analyzing the time complexity of Selection Sort is a little 
trickier. We may already know that the complexity of finding the 
minimum value from an array of size n is O(n) because we cannot 
avoid checking every value in the array. We might reason that there 
is a loop that goes from 1 to n in the algorithm, and our findMinIndex 
should also be O(n). This idea leads us to think that calling an O(n) 
function n times would lead to O(n2). Is this correct? How can we 
be sure? Toward the end of the algorithm’s execution, we are only 
looking for the minimum value’s index from among 3, 2, or 1 values. 
This seems close to O(1) or constant time. Calling an O(1) function 
n times would lead to O(n), right? Practicing this type of reasoning 
and asking these questions will help develop your algorithm analysis 
skills. These are both reasonable arguments, and they have helped 
establish a bound for our algorithm’s complexity. It would be safe 
to assume that the actual runtime is somewhere between O(n) and 
O(n2). Let us try to tackle this question more rigorously. 

When our algorithm begins, nothing is in sorted order 
(assume a random ordering). Our index from line 3 of selectionSort 
starts at 0. Next, findMinIndex searches all n elements from 0 to n − 
1. Then we have the smallest value in position 0, and index becomes 
1. With index 1, findMinIndex searches n − 1 values from 1 to n − 1. 
This continues until index becomes n − 1 and the algorithm finishes 
with all values sorted. 

We have the following pattern: 
With index at 0               n comparison operations are performed by 
findMinIndex. 
With index at 1                n − 1 comparison operations are performed 
by findMinIndex. 
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With index at 2               n − 2 comparison operations are performed 
by findMinIndex. 
… 
With index at n − 2          2 comparison operations are performed by 
findMinIndex. 

With index at n − 1           1 comparison operation is performed by 
findMinIndex. 

Our runtime is represented by the sum of all these 
operations. We could rewrite this in terms of the sum over the 
number of comparison operations at each step: 

n + (n − 1) + (n − 2) + … 3 + 2 + 1. 

Can we rewrite this sequence as a function in terms of n to give the 
true runtime? One way to solve this sequence is as follows: 

Let S = n + (n − 1) + (n − 2) + … 3 + 2 + 1. 

Multiplying S by 2 gives 

2 * S=[n + (n − 1) + (n − 2) + … + 3 + 2 + 1] + [n + (n − 1) + 
(n − 2) + … + 3 + 2 + 1]. 

We can rearrange the right-hand side to highlight a useful pattern: 
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2 * S=[n + (n − 1) + (n − 2) +  …  +    3       +    2       +  1] 

+  [1 +   2        +  3        +  …  + (n − 2)  + (n − 1) +  n]. 

We notice that lining them up with one sequence reversed leads to 
n terms of n + 1: 

2 * S=(n + 1) + (n + 1) + (n + 1) + … + (n + 1) + (n + 1) + (n + 
1) 

=n * (n + 1). 

Now we can divide by two to get an exact function for 
this summation sequence, which is also known as a variant of the 
arithmetic series: 

S=[n * (n + 1)]/2. 

To view it in polynomial terms, we can distribute the n term 
and move the fraction: 
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S=(½)*[n2 + n] 

=(½) n2 + (½) n. 

In Big-O terms, the time complexity of Selection Sort is 
O(n2). This is also known as quadratic time. 

Insertion Sort 

Insertion Sort is another classic sorting algorithm. Insertion Sort 
orders values using a process like organizing books on a bookshelf 
starting from left to right. Consider the following shelf of 
unorganized books: 

Figure 3.4 
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Currently, the books are not organized alphabetically. 
Insertion Sort starts by considering the first book as sorted and 
placing an imaginary separator between the sorted and unsorted 
books. The algorithm then considers the first book in the unsorted 
portion. 

Figure 3.5 

According to the image, the algorithm is now considering 
the book called Linear Algebra. The algorithm will now try to place 
this new book into its proper position in the sorted section of the 
bookshelf. The letter “C” comes before “L,” so the book should be 
placed to the right of the Calculus book, and the algorithm will 
consider the next book. This state is shown in the following image: 
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Figure 3.6 

Now we consider the Algorithms book. In this case, the 
Algorithms book should come before both the Calculus and Linear 
Algebra books, but there is no room on the shelf to just place it 
there. We must make room by moving the other books over. 

The actual process used by the algorithm considers the 
book immediately to the left of the book under consideration. In 
this case, the Linear Algebra book should come after the Algorithms 
book, so the Linear Algebra book is moved over one position to the 
right. Next, the Calculus book should come after the Algorithms 
book, and the Calculus book is moved one position to the right. 
Now there are no other books to reorder, so the Algorithms book 
is placed in the correct position on the shelf. This situation is 
highlighted in the following image: 
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Figure 3.7 

After adjusting the position of these books, we have the 
state displayed below: 
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Figure 3.8 

Now we consider the textbook on Discrete Mathematics. 
First, we examine the Linear Algebra book to its left. The Linear 
Algebra book should go after the Discrete Mathematics book, and it 
is moved to the right by one position. Now examining the Calculus 
book informs us that no other sorted books should be after the 
Discrete Mathematics book. We will now place the Discrete 
Mathematics book in its correct place after the Calculus book. The 
Algorithms book at the far left is not even examined. This process is 
illustrated in the figure below: 

Figure 3.9 

Once the Discrete Mathematics book is placed in its 
correct position, the process begins again, considering the next 
book as shown below: 
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Figure 3.10 

This brief illustration should give you an idea of how the 
Insertion Sort algorithm works. We consider a particular book and 
then “insert” it into the correct sorted position by moving books 
that come after it to the right by one position. The sorted portion 
will grow as we consider each remaining book in the unsorted 
portion. Finally, the unsorted section of the bookcase will be empty, 
and all the books will be sorted properly. This example also 
illustrates that there are other types of ordering. Numerical 
ordering and alphabetical ordering are probably the most common 
orderings you will encounter. Date and time ordering are also 
common, and sorting algorithms will work just as well with these as 
with other types of orderings. 

Insertion Sort Implementation 

For our implementation of Insertion Sort, we will only consider 
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arrays of integers as with Selection Sort. Specifically, we will assume 
that the values of positions in the array are comparable and will 
lead to the correct ordering. The process will work equally well with 
alphabetical characters as with numbers provided the relational 
operators are defined for these and other orderable types. We will 
examine a way to make comparisons more flexible later in the 
chapter. 

This algorithm relies on careful manipulation of array 
indexes. Manipulation of array indexes often leads to errors as 
humans are rarely careful. As always, you are encouraged to test 
your algorithms using different types of data. Let us test our 
implementation using the array from before. We will do this by using 
a trace of an algorithm. A trace is just a way to write out or visualize 
the sequence of steps in an algorithm. Consider the following array 
with indexes: 

Figure 3.11 

The algorithm will start as follows with endSorted set to 
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1 and end set to 8. Entering the body of the while-loop, we set 
currentValue to the value 27, and index is set to endSorted, which is 
1. The image below gives an illustration of this scenario: 

Figure 3.12 

We now consider the inner loop of the algorithm. The 
compound condition of index > 0 and currentValue < array[index − 
1] is under consideration. Index is greater than 0, check! This part 
is true. The value in array[index − 1] is the value at array[1 − 1] or 
array[0]. This value is 43. Now we consider 27 < 43, which is true. 
This makes the compound condition of the while-loop true, so we 
enter the loop. This executes set array[index] to array[index − 1], 
which copies 43 into position array[index] or array[1]. Next, the last 
command is executed to update index to index − 1 or 0. This gives 
us the following state: 
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Figure 3.13 

You may be thinking, “What about 27? Is it lost?” No, the 
value of 27 was saved in the currentValue variable. We now loop 
and check index > 0 and currentValue < array[index − 1] again. 
This time index > 0 fails with index equal to 0. The algorithm then 
executes set array[index] to currentValue. This operation places 27 
into position 0, providing the correct order. Finally, the endSorted 
variable is increased by 1 and now points to the next value to 
consider. At the start of the next loop, after currentValue and index 
are set, we have the state of execution presented below: 
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Figure 3.14 

Next, the algorithm would check the condition of the inner 
loop. Here index is greater than 0, but currentValue is not less than 
array[index − 1], as 45 is not less than 43. Moving over the loop, 
currentValue is placed back into its original position (line 12), and 
the indexes are updated at the end of the loop as usual. Moving to 
the next value to consider, before line 7 we now have the scenarios 
presented below: 

78  |  Sorting



Figure 3.15 

From this image, we can imagine what would happen next. 
The value 24 is smaller than all these values. Let us trace how the 
algorithm would proceed. As 24 is less than 45, the body will execute 
copying 45 to the right and updating the index. 
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Figure 3.16 

In the above image, we notice that 24 is less than 43. 
Therefore, we copy and update our indexes. This gives the following 
successive states of execution: 

Figure 3.17 

Then… 
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Figure 3.18 

Now with index 0, the inner loop’s body will not execute. 
We will copy the currentValue into the index position and begin the 
outer loop’s execution again. At the start of the next inner loop, we 
have the scene below: 
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Figure 3.19 

These illustrations give you an idea of the execution of 
the Insertion Sort. These drawings are sometimes called traces. 
Creating algorithm tracing will give a good idea of how your 
algorithm is working and will also help you understand if your 
algorithm is correct or not. From these diagrams, we can infer that 
the endSorted value will grow to reach the end of the array and all 
the values will eventually be properly sorted. You should attempt to 
complete the rest of this trace for practice. 

Insertion Sort Complexity 

From this example execution, you may have noticed that sometimes 
Insertion Sort does a lot of work, but other times it seems that 
very little needs to be done. This observation allows us to consider 
a different way to analyze algorithms—namely, the best-case time 
complexity. Before we address this question, let us analyze the 
worst-case space complexity and the worst-case time complexity of 
Insertion Sort. 

The space complexity of Insertion Sort should be easy to 
determine. We only need space for the array itself and a few other 
index- and value-storage variables. This means that our memory 
usage is O(n) for the array and a small constant number of other 
values where c << n (a constant much smaller than n). This means 
our memory usage is bounded by n + c, and we have an O(n) space 
complexity for Insertion Sort. The memory usage of Insertion Sort 
takes O(n) for the array itself and O(1) for the other necessary 
variables. This O(1) memory cost for the indexes and other values 
is sometimes referred to as the auxiliary memory. It is the extra 
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memory needed for the algorithm to function in addition to the 
storage cost of the array values themselves. This auxiliary memory 
could be freed after the algorithm completes while keeping the 
sorted array intact. We will revisit auxiliary memory later in the 
chapter. 

When considering the time complexity, we are generally 
interested in the worst-case scenario. When we talk about a “case,” 
we mean a particular instance of the problem that has some special 
features that impact the algorithm’s performance. What special 
features of the way our values are organized might lead to a good or 
bad case for our algorithm? In what situation would we encounter 
the absolute largest number of operations? As we observed in our 
trace, the value 24 resulted in a lot of comparisons and move 
operations. We continued to check each value and move all the 
values greater than 24 one space to the right. In contrast, value 45 
was nearly in the right place. For 45, we only “moved” it back into 
the same place from which it came. Take a moment to think about 
what these observations might mean for our worst-case and best-
case analysis. 

Let us think about the case of 24 first. Why did 24 require so 
many operations? Well, it was smaller than all the values that came 
before it. In a sense, it was “maximally out of place.” Suppose the 
value 23 came next in the endSorted position. This would require 
us to move all the other values, including 24, over again to make 
room for 23 in the first position. What if 22 came next? There may 
be a pattern developing. We considered some values followed by 
24, 23, then 22. These values would lead to a lot of work each time. 
The original starting order of our previous array was 43, 27, 45, 24, 
35, 47, 22, 48. For Insertion Sort, what would be the worst starting 
order? Or put another way, which starting order would lead to the 
absolute highest number of comparison and move operations? Take 
a moment to think about it. 

When sorting in increasing order, the worst scenario or 
Insertion Sort would be an array where all values are in decreasing 
order. This means that every value being considered for placement 
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is “maximally out of place.” Consider the case where our values were 
ordered as 48, 47, 45, 43, 35, 27, 24, 22, and we needed to place them 
in increasing order. The positions of 48 and 47 must be swapped. 
Next, 45 must move to position 0. Next, 43 moves to position 0 
resulting in 3 comparisons and 3 move (or assignment) operations. 
Then, 35 results in 4 comparisons and 4 move operations to take its 
place at the front. This process continues for smaller and smaller 
values that need to be moved all the way to the front of the array. 

From this pattern, we see that for this worst-case scenario, 
the first value considered takes 1 comparison and 1 move operation. 
The second value requires 2 comparisons and 2 moves. The third 
takes 3 comparisons and 3 moves, and so on. As the total runtime is 
the sum of the operations for all the values, we see that a function 
for the worst-case runtime would look like the following equation. 
The 2 accounts for an equal number of comparisons and moves: 

T(n)=2 * 1 + 2 * 2 + 2 * 3 + 2 * 4 + … 2 * (n − 1). 

This can be rewritten as 

T(n)=2 * (1 + 2 + 3 + 4 … n − 1). 

We see that this function has a growing sum as we saw 
with Selection Sort. We can substitute this value back into the time 
equation, T(n): 
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T(n)=2 * {(½)[n*(n − 1)]}. 

The 2 and ½ cancel, leaving 

T(n)=n*(n − 1). 

Viewing this as a polynomial, we have 

T(n)=n2 − n. 

This means that our worst-case time complexity is O(n2). 
This is the same as Selection Sort’s worst-case time complexity. 

Best-Case Time Complexity Analysis of Insertion 
Sort and Selection Sort 

Now that we have seen the worst-case scenario, try to imagine 
the best-case scenario. What feature would that best-case problem 
instance have for Insertion Sort? In our example trace, we noticed 
that the value 45 saw 1 comparison and 1 “move,” which simply set 45 
back in the same place. The key observation is that 45 was already 
in its correct position relative to the other values in the sorted 
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portion of the array. Specifically, 45 is larger than the other values in 
the sorted portion, meaning it is “already sorted.” Suppose we next 
considered 46. Well, 46 would be larger than 45, which is already 
larger than the other previous values. This means 46 is already 
sorted as well, resulting in 1 additional comparison and 1 additional 
move operation. We now know that the best-case scenario for 
Insertion Sort is a correctly sorted array. 

For our example array, this would be 22, 24, 27, 35, 43, 45, 47, 
48. Think about how Insertion Sort would proceed with this array. 
We first consider 24 with respect to 22. This gives 1 comparison and 
1 move operation. Next, we consider 27, adding 1 comparison and 1 
move, and so on until we reach 48 at the end of the array. Following 
this pattern, 2 operations are needed for each of the n − 1 values to 
the right of 22 in the array. Therefore, we have 2*(n − 1) operations 
leading to a bound of O(n) operations for the best-case scenario. 
This means that when the array is already sorted, Insertion Sort 
will execute in O(n) time. This could be a significant cost savings 
compared to the O(n2) case. 

The fact that Insertion Sort has a best-case time 
complexity of O(n) and a worst-case time complexity of O(n2) may 
be hard to interpret. To better understand these features, let us 
consider the best- and worst-case time complexity of Selection 
Sort. Suppose that we attempt to sort an array with Selection Sort, 
and that array is already sorted in increasing order. Selection Sort 
will begin by finding the minimum value in the array and placing it 
in the first position. The first value is already in its correct position, 
but Selection Sort still performs n comparisons and 1 move. The 
next value is considered, and n − 1 comparisons are executed. This 
progression leads to another variation of the arithmetic series (n 
+ n − 1 + n − 2 …) leading to O(n2) time complexity. Suppose now 
that we have the opposite scenario, where the array is sorted in 
descending order. Selection Sort performs the same. It searches for 
the minimum and moves it to the first position. Then it searches 
for the second smallest value, moves it to position 1, and continues 
with the remaining values. This again leads to O(n2) time complexity. 
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We have now considered the already-sorted array and the reverse-
order-sorted array, and both cases led to O(n2) time complexity. 

Regardless of the orderings of the input array, Selection 
Sort always takes O(n2) operations. Depending on the input 
configuration, Insertion Sort may take O(n2) operations, but in other 
cases, the time complexity may be closer to O(n). This gives 
Insertion Sort a definite advantage over Selection Sort in terms of 
time complexity. You may rightly ask, “How big is this advantage?” 
Constant factors can be large, after all. The answer is “It depends.” 
We may wish to ask, “How likely are we to encounter our best-case 
scenario?” This question may only be answered by making some 
assumptions about how the algorithms will be used or assumptions 
about the types of value sets that we will be sorting. Is it likely we 
will encounter data sets that are nearly sorted? Would it be more 
likely that the values are in a roughly random order? The answers 
to these questions will be highly context-dependent. For now, we 
will only highlight that Insertion Sort has a better best-case time 
complexity bound than Selection Sort. 

Merge Sort 

Now we have seen two interesting sorting algorithms for arrays, 
and we have had a fair amount of experience analyzing the time 
and space complexity of these algorithms. Both Selection Sort and 
Insertion Sort have a worst-case time complexity bound of O(n2). In 
computer science terms, we would say that they are both equivalent 
in terms of runtime. “But wait! You said Insertion Sort was faster!” 
Yes, Insertion Sort may occasionally perform better, but it turns 
out that even the average-case runtime is O(n2). In general, their 
growth functions are both bounded by O(n2). This fact means that 
when n is large enough, any minor differences between their actual 
runtime efficiency will become negligible with respect to the overall 
time: Graduate Student: “This algorithm is more efficient! It will 
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only take 98 years to complete compared to the 99 years of the 
other algorithm.” Professor: “I would like to have the problem solved 
before I pass away. Preferably, before I retire.” This is an extreme 
example. Often, minor improvements to an algorithm can make a 
very real impact, especially on real-time systems with small input 
sizes. On the other hand, reducing the runtime bound by more than 
a constant factor can have a drastic impact on performance. In 
this section, we will present Merge Sort, an algorithm that greatly 
improves on the runtime efficiency of Insertion Sort and Selection 
Sort. 

Description of Merge Sort 

Merge Sort uses a recursive strategy to sort a collection of numbers. 
In simple terms, the algorithm takes two already sorted lists and 
merges them into one final sorted list. The general strategy of 
dividing the work into subproblems is sometimes called “divide and 
conquer.” The algorithm can be specified with a brief description. 

To Merge Sort a list, do the following: 

• Recursively Merge Sort the first half of the list. 
• Recursively Merge Sort the second half of the list. 
• Merge the two sorted halves of the list into one list. 

Before we investigate the implementation, let us visualize 
how this might work with our previous array. Suppose we have the 
following values: 
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Figure 3.20 

Merge Sort would first split the array in half and then make 
a recursive call on the two subarrays. This would in turn split 
repeatedly until each array is only a single element. For this 
example, the process would look something like the image below. 

Figure 3.21 

Now the algorithm would begin merging each of the 
individual values into sets of two, then two sets of two into a sorted 
list of four, and so on. This is illustrated below: 
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Figure 3.22 

The result would be a correctly sorted list. This simple 
strategy leads to an efficient algorithm, as we will see. 

There is one part of the process we have not discussed: the 
merge process. Let us explore merging at one of the intermediate 
levels. The example below shows one of the merge steps. The top 
portion shows conceptually what happens. The bottom portion 
shows that specific items are moved into specific positions in the 
new sorted array. 

90  |  Sorting



Figure 3.23 

To implement Merge Sort, the merge function will be an 
important part of the algorithm. Let us explore merging with 
another diagram that more closely resembles our eventual design. 
At this intermediate step, the data of interest is part of a larger array. 
These data are composed of two sorted sublists. There are some 
specific indexes we want to know about. Specifically, they are the 
start of the first sublist, the end of the first sublist, and the final 
position of the data representing the end of the data to be merged. 
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Figure 3.24 

Our strategy for merging will be to copy the two sublist 
sets of values into two temporary storage arrays and then merge 
them back into the original array. This process is illustrated below: 

Figure 3.25 

Once the merge process completes, the temporary storage 
may be freed. This requires some temporary memory usage, but 
this will be returned to the system once the algorithm completes. 
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Using this approach simplifies the code and makes sure the data are 
sorted and put back into the original array. 

These are the key ideas behind Merge Sort. Now we will 
examine the implementation. 

Merge Sort Implementation 

The implementation of algorithms can be tricky. Again, we will use 
the approach of creating several functions that work together to 
solve our problem. This approach has several advantages. Mainly, 
we want to reduce our cognitive load so that thinking about the 
algorithm becomes easier. We will make fewer errors if we focus on 
specific components of the implementation in sequence rather than 
trying to coordinate multiple different ideas in our minds. 

We will start with writing the merge function. This function 
will accept the array and three index values (start of left half, end 
of left half, and end of data). Notice that for this merge 
implementation, we use end to refer to the last valid position of 
the subarray. This use of end is a little different from how we have 
used it before. Before, we had end specify a value beyond the array 
(one position beyond the last valid index). Here end will specify the 
last valid index. The merge function proceeds by copying the data 
into temporary storage arrays and then merging them back into the 
original array. 

For the copy step, we extend the storage arrays to hold one 
extra value. This value is known as a sentinel. The sentinel will be 
a special value representing the highest possible value (or lowest 
for other orderings). Most programming languages support this as 
either a MAX or an Infinity construct. Any ordinary value compared 
to MAX or Infinity will be less than the sentinel (or greater than 
for MIN or −Infinity with other orderings). In our code, we will use 
MAX to represent our sentinel construct. 

The merge function is presented below: 
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This function will take a split segment of an array, identified 
by indexes, and merge the values of the left and right halves in order. 
This will place their values into their proper sorted order in the 
original array. Merge is the most complex function that we will write 
for Merge Sort. This function is complex in a general sense because 
it relies on the careful manipulation of indexes. This is a very error-
prone process that leads to many off-by-one errors. If you forget 
to add 1 or subtract 1 in a specific place, your algorithm may be 
completely broken. One advantage of a modular design is that these 
functions can be tested independently. At this time, we may wish to 
create some tests for the merge function. This is a good practice, 
but it is outside of the scope of this text. You are encouraged to 
write a test of your newly created function with a simple example 
such as 27, 43, 24, 45 from the diagrams above. 

Now that the merge implementation is complete, we will 
move on to writing the recursive function that will complete Merge 
Sort. Here we will use the mathematical “floor” function. This is 
equivalent to integer division in C-like languages or truncation in 
languages with fixed-size integers. 
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From this implementation, we see that the recursion 
continues while the start index is less than the end index. Recursion 
ends once the start and end index have the same value. In other 
words, our process will continue splitting and splitting the data until 
it reaches a level of a single-array element. At this point, recursion 
ends, a single value is sorted by default, and the merging process 
can begin. This process continues until the final two halves are 
sorted and merged into their new positions within the starting 
array, completing the algorithm. 

Once more, we have a recursive algorithm requiring some 
starting values. In cases like these, we should use a wrapper to 
provide a more user-friendly interface. A wrapper can be 
constructed as follows: 

Merge Sort Complexity 

At the beginning of the Merge Sort section, we stated that Merge 
Sort is indeed faster than Selection Sort and Insertion Sort in terms 
of worst-case runtime complexity. We will look at how this is 
possible. 

We may begin by trying to figure out the complexity of the 
merge function. Suppose we have a stretch of n values that need to 
be merged. They are copied into two storage arrays of size roughly 
n/2 and then merged back into the array. We could reason that it 
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takes n/2 individual copies for each half of the array. Then another 
n copies back into the original array. This gives n/2 + n/2 + n total 
copy operations, giving 2n. This would be O(n) or linear time. 

Now that we know merging is O(n) we can start to think 
about Merge Sort. Thinking about the top-level case at the start of 
the algorithm, we can set up a function for the time cost of Merge 
Sort: 

T(n)=2*T(n/2) + c*n. 

This captures the cost of Merge Sorting the two halves of the array 
and the merge cost, which we determined would be O(n) or n times 
some constant c. Substituting this equation into itself for T(n/2) 
gives the following: 

T(n)=2*[2 * T(n/4) + c*n/2] + c*n. 

Cleaning things up a little gives the following sequence: 

T(n)=2*[2 * T(n/4) + c*(n/2)] + c*n 

=4 * T(n/4) + 2*c*(n/2) + c*n 

=4 * T(n/4) + c*n + c*n. 

As this pattern continues, we will get more and more c*n 
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terms. Instead of continuing the recurrence, we will instead draw a 
diagram to show how many of these we can expect. 

Figure 3.26 

Expanding the cost of sorting the two halves, we get the 
next diagram. 
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Figure 3.27 

As the process continues, the c*n terms start to add up. 

Figure 3.28 

To determine the complexity though, we need to know how 
many of these terms to expect. The number of c*n terms is related 
to the depth of the recursion. We need to know how many times 
to split the array before arriving at the case where the start index 
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is equal to the end index. In other words, how many times can we 
split before we reach the single-element level of the array? We just 
need to solve 1 = n/2k for the value k. Setting k to log2 n solves this 
equation. Therefore, we have log2 n occurrences of the c*n terms. 
If we assume that n is a power of 2, the overall time cost gives us 
T(n) = n*T(1) + log2 n * c * n. For T(1), our wrapper function would 
make one check and return. We can safely assume that T(1) = c, a 
small constant. We could then write it as T(n) = n*c + log2 n * c * 
n, or c*(n * log2 n + n). In Big-O terms, we arrive at O(n log2 n). 
A consequence of Big-O is that constants are ignored. Logs in any 
base can be related to each other by a constant factor (log2(n) = 
log3(n)/log3(2), and note that 1/log3(2) is a constant), so the base 
is usually dropped in computer science discussions. We can now 
state the proper worst-case runtime complexity of Merge Sort is 
O(n log n). It may not be obvious, but this improvement leads to a 
fundamental improvement over O(n2). For example, at n = 100, n2 = 
10000, but n*log2 n is approximately 665, which is less than a tenth 
of the n2 value. Merge Sort guarantees a runtime bounded by O(n 
log n), as the best case and worst case are equivalent (much like 
Selection Sort). 

For space complexity, we will need at least enough memory 
as we have elements of the array. So we need at least O(n) space. 
Remember that we also needed some temporary storage for copying 
the subarrays before merging them again. We need the most 
memory for the case near the end of the algorithm. At this stage, we 
have two n/2-sized storage arrays in addition to the original array. 
This leads us to space for the original n values and another n value’s 
worth of storage for the temporary values. That gives 2*n near the 
end of the calculation, so overall memory usage seems to be O(n). 
This is not the whole story though. 

Since we are using a recursive algorithm, we may also 
reason that we need stack space to store the sequence of calls. 
Each stack frame does not need to hold a copy of the array. Usually, 
arrays are treated as references. This means that each stack frame is 
likely small, containing a link to the array’s location and the indexes 
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needed to keep our place in the array. This means that each 
recursive call will take up a constant amount of memory. The other 
question we need to address is “How large will the stack of frames 
grow during execution?” We can expect as many recursive calls as 
the depth of the treelike structure in the diagrams above. We know 
now that that depth is approximately log n. Now we have all the 
pieces to think about the overall space complexity of Merge Sort. 

First, we need n values for the original array. Next, we will 
need another n value for storage in the worst case (near the end of 
the algorithm). Finally, we can expect the stack to take up around log 
n stack frames. This gives the following formula using c1 and c2 to 
account for a small number of extra variables associated with each 
category (indexes for the temporary arrays, start and end indexes 
for recursive calls, etc.): S(n) = n + c1*n + c2*log n. This leads to O(2*n 
+ log n), which simplifies to just O(n) in Big-O notation. The overall 
space complexity of Merge Sort is O(n). 

Auxiliary Space and In-Place Sorting 

We have now discussed the worst-case space and time complexity 
of Merge Sort, but an important aspect of Merge Sort still needs 
to be addressed. All the sorting algorithms we have discussed so 
far have worst-case space complexity bounds of O(n), meaning they 
require at most a constant multiple of the size of their input data. As 
we should know by now, constant values can be large and do make 
a difference in real-world computing. Another type of memory 
analysis is useful in practice. This is the issue of auxiliary memory. 

It is understood that for sorting we need enough memory 
to store the input. This means that no sorting algorithm could 
require less memory than is needed for that storage. A lower bound 
smaller than n is not possible for sorting. The idea behind auxiliary 
memory analysis is to remove the implicit storage of the input data 
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from the equation and think about how much “extra” memory is 
needed. 

Let us try to think about auxiliary storage for Selection 
Sort. We said that Selection Sort only uses the memory needed for 
the array plus a few extra variables. Removing the array storage, we 
are left with the “few extra variables” part. It means that a constant 
number of “auxiliary” variables are needed, leading to an auxiliary 
space cost of O(1) or constant auxiliary memory usage. Insertion 
Sort falls into the same category, needing only a few index variables 
in addition to storage used for the array itself. Insertion Sort has an 
auxiliary memory cost of O(1). 

An algorithm of this kind that requires only a constant 
amount of extra memory is called an “in-place” algorithm. The 
algorithm keeps array data as a whole within its original place in 
memory (even if specific values are rearranged). Historically, this 
was a very important feature of algorithms when memory was 
expensive. Both Selection Sort and Insertion Sort are in-place 
sorting algorithms. 

Coming back to Merge Sort, we can roughly estimate the 
memory usage with this function: 

S(n) = n + c1*n + c2*log n. 

Now we remove n for the storage of the array to think about the 
auxiliary memory. That leaves us with c1*n + c2*log n. This means 
our auxiliary memory usage is bounded by O(n + log n) or just 
O(n). This means that Merge Sort potentially needs quite a bit of 
extra memory, and it grows proportionally to the size of the input. 
This represents the major drawback of Merge Sort. On modern 
computers, which have sizable memory, the extra memory cost is 
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usually worth the speed up, although the only way to know for sure 
is to test it on your machine. 

Quick Sort 

The next sorting algorithm we will consider is called Quick Sort. 
Quick Sort represents an interesting algorithm whose worst-case 
time complexity is O(n2). You may be thinking, “n2? We already 
have an O(n log n) algorithm. I’ll pass, thank you.” Well, hold on. 
In practice, Quick Sort performs as well as Merge Sort for most 
cases, but it does much better in terms of auxiliary memory. Let us 
examine the Quick Sort algorithm and then discuss its complexity. 
This will lead to a discussion of average-case complexity. 

Description of Quick Sort 

The general idea of Quick Sort is to choose a pivot key value and 
move any array element less than the pivot to the left side of the 
array (for increasing or ascending order). Similarly, any value greater 
than the pivot should move to the right. Now on either side of the 
pivot, there are two smaller unsorted portions of the array. This 
might look something like this: [all numbers less than pivot, the 
pivot value, all numbers greater than pivot]. Now the pivot is in 
its correct place, and the higher and lower values have all moved 
closer to their final positions. The next step recursively sorts these 
two portions of the array in place. The process of moving values to 
the left and right of a pivot is called “partitioning” in this context. 
There are many variations on Quick Sort, and many of them focus 
on clever ways to choose the pivot. We will focus on a simple version 
to make the runtime complexity easier to understand. 
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Quick Sort Implementation 

To implement Quick Sort, we will use a few helper functions. We 
have already seen the first helper function, exchange (above). Next, 
we will write a partition function that does the job of moving the 
values of the array on either side of the pivot. Here start is the first 
and end is the last valid index in the array. For example, end would 
be n − 1 (rather than n) when partitioning the whole array. This will 
be important as we recursively sort each subset of values with Quick 
Sort. 

This partition function does the bulk of the work for the 
algorithm. First, the pivot is assumed to be the first value in the 
array. The algorithm then places any value less than the pivot on 
the left of the eventual position of the pivot value. This goal is 
accomplished using the smallIndex value that holds the position 
of the last value that was smaller than the pivot. When the loop 
advances to a position that holds a value smaller than the pivot, the 
algorithm exchanges the smaller value with the one to the right of 
smallIndex (the rightmost value considered so far that is smaller 
than the pivot). Finally, the algorithm exchanges the first value, the 
pivot, with the small value at smallIndex to put the pivot in its final 
position, and smallIndex is returned. The final return provides the 
pivot value’s index for the recursive process that we will examine 
next. 
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Using recursion, the remainder of the algorithm is simple 
to implement. We will recursively sort by first partitioning the 
values between start and end. By calling partition, we are 
guaranteed to have the pivot in its correct position in the array. 
Next, we recursively sort all the remaining values to the left and 
right of the pivot location. This completes the algorithm, but we may 
wish to create a nice wrapper for this function to avoid so much 
index passing. 

Quick Sort Complexity 

The complexity analysis of Quick Sort is interesting. We know that 
Quick Sort is a recursive algorithm, so we may reason that its 
complexity is like Merge Sort. One advantage of Quick Sort is that it 
is “in place.” There are no copies of the data array, so there should 
not be any need for extra or “auxiliary” space. Remember though, 
we do need stack space to handle all those recursive calls and 
their local index variables. The critical question now is “How many 
recursive calls can we expect?” This question will determine our 
runtime complexity and reveal some interesting features of Quick 
Sort and Big-O analysis in general. 

To better understand how this process may work, let’s look 
at an example using the same array we used with Merge Sort. 
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Figure 3.29 

Quick Sort would begin by calling partition and setting the 
pivotValue to 43. The smallIndex would be set to 0. The loop would 
begin executing with index at 1. Since the value at index (27) is less 
than the pivot (43), the algorithm would increment smallIndex and 
exchange it with the value at index. In this case, nothing happens, 
as the indexes are the same. This is OK. Trying to optimize the small 
issues would substantially complicate the code. We are striving for 
understanding right now. 
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Figure 3.30 

With smallIndex updated, execution continues through the 
loop examining new values. Since 45 is greater than the pivot, the 
loop simply continues and updates index only. 

Figure 3.31 
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The next value, 24, is smaller than our pivot. This means the 
algorithm updates smallIndex and exchange values. 

Figure 3.32 

Now the array is in the following state just before the loop 
finishes. Next, the index will be incremented, and position 4 will be 
examined. Notice how smallIndex always points to the rightmost 
value smaller than the pivot. 
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Figure 3.33 

The partition function will continue this process until 
index reaches the end of the array. Once the loop has ended, the 
pivot value at the start position will be exchanged with the value at 
the smallIndex position. 
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Figure 3.34 

Now the partition function is complete, and the next step 
in the algorithm is to recursively Quick Sort the left and right 
partitions. In the figure below, we use startL and endL to mark the 
start and end of the left array half (and similarly for the right half): 
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Figure 3.35 

Now the process of partitioning would begin again for both 
sides of the array. You can envision this process growing like a tree 
with each new partition being broken down into two smaller parts. 
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Figure 3.36 

Let’s assume that each recursive call to partition breaks the 
array into roughly equal-size parts. Then the array will be roughly 
split in half each time, and the tree will appear to be balanced. 
If this is the case, we can now think about the time complexity 
of this algorithm. The partition function must visit every value in 
the array to put it on the correct side of the pivot. This means 
that partition is O(n). Once the array is split, partition runs on two 
smaller arrays each of size n/2 as we assumed. For simplicity, we 
will ignore subtracting 1 for the pivot. This will not change the Big-
O complexity. This splitting means that the second level of the tree 
needs to process two calls to partition with inputs of n/2, so 2(n/
2) or n. This reasoning is identical to our analysis of Merge Sort. The 
time complexity is then determined by the height of this tree. In our 
analysis of Merge Sort, we determined that a balanced tree has a 
height of log n. This leads to a runtime complexity of O(n log n). 

So if partitioning roughly splits the array in half every time, 
the time complexity of Quick Sort is O(n log n). That is a big “if” 
though. Even in this example, we can see that this is not always 
the case. We said that for simplicity we would just choose the very 
first value as our pivot. What happens on the very next recursive 
iteration of Quick Sort for our example? 

For the left recursive call, 22 is chosen as the pivot, but it 
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is the smallest value in its partition. This leads to an uneven split. 
When Quick Sort runs recursively on these parts, the left side is 
split unevenly, but the right side is split evenly in half. 

Figure 3.37 

The possibility of uneven splits hints that more work might 
be required. This calls into question our optimistic assumption that 
the algorithms will split the array evenly every time. This shows that 
things could get worse. But how bad could it get? Let’s think about 
the worst-case scenario. We saw that when 22 was the smallest 
value, there was no left side of the split. What if the values were 22, 
24, 27, 35? 
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Figure 3.38 

This shows an array that is already sorted. Let’s now 
assume that we have a list that is already sorted, and every time 
a pivot is chosen, it chooses the smallest value. This means that 
the partitions that are created are an empty left subset and a right 
subset that contains all the remaining values minus the pivot. 
Recursion runs Quick Sort on the remaining n − 1 values. This 
process would produce a very uneven tree. First, we run partition 
on n elements, then n − 1 elements, then n − 2, and so on. 

Figure 3.39 

This process produces a progression that looks like our 
analysis of Insertion Sort but in reverse. We get n + n − 1 + n − 2 + … 
3 + 2. This leads to a complexity of O(n2). This worst-case runtime 
complexity is O(n2). You may be thinking that “quick” is not a great 
name for an algorithm with a quadratic runtime. Well, this is not the 
full story either. In practice, Quick Sort is very fast. It is comparable 

Sorting  |  113



to Merge Sort in many real-world settings, and it has the advantage 
of being an “in-place” sorting algorithm. Let’s next explore some of 
these ideas and try to understand why Quick Sort is a great and 
highly used algorithm in practice even with a worst-case complexity 
of O(n2). 

Average-Case Time Complexity 

We now know that bad choices of the pivot can lead to poor 
performance. Consider the example Quick Sort execution above. 
The first pivot of 43 was near the middle, but 22 was a bad choice in 
the second iteration. The choice of 47 on the right side of the second 
iteration was a good choice. Let us assume that the values to be 
sorted are randomly distributed. This means that the probability of 
choosing the worst pivot should be 1/n. The probability of choosing 
the worst pivot twice in a row would be 1/n * 1/(n − 1). This 
probability is shrinking rapidly. 

Here is another way to think about it. The idea of 
repeatedly choosing a bad pivot by chance is the same as 
encountering an already sorted array by chance. So the already 
sorted order is one ordering out of all possible orderings. How many 
possible orderings exist? Well, in our example we have 8 values. We 
can choose any of the 8 as the first value. Once the first value is 
chosen, we can choose any of the remaining 7 values for the second 
value. This means that for the first two values, we already have 8*7 
choices. Continuing this process, we get 8*7*6*5*4*3*2*1. There is a 
special mathematical function for this called factorial. We represent 
factorial with an exclamation point (!). So we say that there are 8! 
or 8 factorial possible orderings for our 8 values. That is a total of 
40,320 possible orderings with just 8 values! That means that the 
probability of encountering by chance an already sorted list of 8 
values is 1/8! or 1/40,320, which is 0.00002480158. Now imagine the 
perfectly reasonable task of sorting 100 values. The value of 100! is 
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greater than the estimated number of atoms in the universe! This 
makes the probability of paying the high cost of O(n2) extremely 
unlikely for even relatively small arrays. 

To think about the average-case complexity, we need to 
consider the complexity across all cases. We could reason that 
making the absolute best choice for a pivot is just as unlikely as 
making the absolute worst choice. This means that the vast majority 
of cases will be somewhere in the middle. Researchers have studied 
Quick Sort and determined that the average complexity is O(n log n). 
We won’t try to formally prove the average case, but we will provide 
some intuition for why this might be. Sequences of bad choices for 
a pivot are unlikely. When a pivot is chosen that partitions the array 
unevenly, one part is smaller than the other. The smaller subset will 
then terminate more quickly during recursion. The larger part has 
another chance to choose a decent pivot, moving closer to the case 
of a balanced partition. 

As we mentioned, the choice of pivot can further improve 
the performance of Quick Sort by working harder to avoid choosing 
a bad pivot value. Some example extensions are to choose the pivot 
randomly or to select 3 values from the list and choose the median. 
These can offer some improvement over choosing the first element 
as the pivot. Other variations switch to Insertion Sort once the 
size of the partitions becomes sufficiently small, taking advantage 
of the fact that small data sets may often be almost sorted, and 
small partitions can take advantage of CPU cache efficiency. These 
modifications can help improve the practical measured runtime but 
do not change the overall Big-O complexity. 

Quick Sort Space Complexity 

We should also discuss the space complexity for Quick Sort. Quick 
Sort is an “in-place” sorting algorithm. So we do not require any 
extra copies of the data. The tricky part about considering the 
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space complexity of Quick Sort is recognizing that it is a recursive 
algorithm and therefore requires stack space. As with the worst-
case time complexity, it is possible that recursive calls to Quick 
Sort will require stack space proportional to n. This leads to O(n) 
elements stored in the array and O(n) extra data stored in the stack 
frames. In the worst case, we have O(n + n) total space, which is 
just O(n). Of the total space, we need O(n) auxiliary space for stack 
data during the recursive execution of the algorithm. This scenario 
is unlikely though. The average case leads to O(n + log n) space if our 
recursion only reaches a depth of log n rather than n. This is still just 
O(n) space complexity, but the auxiliary space is now only O(log n). 

 

Exercises 

1. Create a set of tools to generate random arrays of 
values for different sizes in your language of choice. 
These can be used to test your sorting algorithms. Some 
useful functions and capabilities are provided below. 

a. Include functions to generate random arrays 
of a given size up to 10,000. 

b. Include functions to print the first 5 numbers 
or the entire array. 

c. Provide parameters to control the range of 
values. 

d. Provide functions to generate already sorted 
or reverse sorted arrays. 

e. Explore your programming language’s time 
functionality to be able to measure sorting 
performance in terms of the time taken to complete 

116  |  Sorting



the sort. 
f. Consider creating functions to repeatedly run 

an algorithm and record the average sorting time. 

2
. Implement Selection Sort and Insertion Sort in 

your language of choice. Using randomly generated array 
data, try to find the number of values where Insertion 
Sort begins to improve on Selection Sort. Remember to 
repeat the sorting several times to calculate an average 
time. 

3
. Implement Merge Sort and repeat the analysis for 

Merge Sort and Insertion Sort. For what n does Merge 
Sort begin to substantially improve on Insertion Sort? Or 
does it seem to improve at all? 

4
. Implement Quick Sort in your language of choice. 

Next, determine the time for sorting 100 values that are 
already sorted using Quick Sort (complete the 1.d 
exercise). Next, randomly generate 1,000 arrays of size 
100 and sort them while calculating the runtime. Are any 
as slow as Quick Sort on the sorted array? If so, how 
many? If not, what is the closest time? 
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4.  Search 

Learning Objectives 

After reading this chapter you will… 

• understand how to find specific data within an 
array by searching. 

• be able to implement a search algorithm that runs 
in O(n) time. 

• be able to implement Binary Search for arrays that 
will run in O(log n) time. 

Introduction 

The problem of finding something is an important task. Many of 
us will spend countless hours in our lives looking for our keys or 
phone or trying to find the best tomatoes at the grocery store. In 
computer science, finding a specific record in a database can be an 
important task. Another common use for searching is to check if a 
value already exists in a collection. This function is important for 
implementing “sets” or collections of unique elements. 

With the search problem, we start to think a little more 
about our data structures and what a solution means in the context 
of the data structure used. Suppose, for example, that we have an 
array of the following values using 0-based indexing. 
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Figure 4.1 

What does it mean to find the value 22? Should we return 
True if 22 is in the array? Should we return the index 6 instead? 
What should we do if 22 is not found? These questions will depend 
on how the search function is used in its broader context. 

Let us describe a search problem in more detail. First, we 
are looking for a specific value or a record identified by a specific 
code in our data set. We will call the value for which we are 
searching the “key.” The key is a data value used to find a match in 
the data structure. For a simple array, the key is just the value itself. 
For example, 22 could be the key for which we are looking. Further, 
we may specify that our algorithms should return True if the key is 
found in our data structure and False if we fail to find the key. With 
our previous array, a call to search(array, 22) should return True, but 
a call to search(array, 12) should return False. 

We now have an idea of what our search function should 
do, but we do not yet have an idea of how it should do it. Can you 
think of a way to implement search? Take a few minutes to think 
about it. 

I am sure most computer science students would come to 
the same idea. Examine all the values of the array one by one, which 
is also known as iterating. If one of the values matches the key, 
return True. If we get to the end without finding the key, return 
False. This is a simple idea that will definitely work. This is the 
strategy behind Linear Search, which we will examine in the next 
section. 
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Linear Search 

Linear Search may be the simplest searching algorithm. It uses an 
approach similar to the way a human might look for something in 
a systematic way—that is, by examining everything one by one. If 
your mother puts your clothes away and you are trying to find your 
favorite shirt, you might try every drawer in your room until it is 
found. Linear Search is an exhaustive search that will eventually 
examine every value in an array one by one. You can remember the 
name linear by thinking of it as going one by one in a line through 
all the values. Linear is also a clue that the runtime is O(n) because 
in the worst case, we must examine all n items in the array. 

Let us examine one implementation of Linear Search. 

Linear Search Complexity 

As always, we will be interested in assessing the time and space 
scaling behavior of our algorithm. This means we want to know how 
its resource demand grows with larger inputs. 

For space complexity, Linear Search needs storage for the 
array and a few other variables (the index of our for-loop, for 
example). This leads to a bound of O(n) space complexity. 

For time complexity, we want to think about the best-case 
and worst-case scenarios. Suppose we go to search for the key, 22, 
and as luck would have it, 22 is the first value in the array! This 
leads to only a small number of operations and only 1 comparison 
operation. As you may have guessed, the best-case scenario leads 
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to an O(1) or constant number of operations. In algorithm analysis 
(as in stock market investing), luck is not a strategy. We still need 
to consider the worst-case behavior of the algorithm, as this 
characteristic makes a better tool for evaluating one algorithm 
against another. In general, we cannot choose the problems we 
encounter, and our methods should be robust against all types of 
problems that are thrown at us. The worst case for Linear Search 
would be a problem where our key is found at the end of the array 
or isn’t found at all. For inputs with this feature, our time complexity 
bound is O(n). 

Linear Search with Objects 

Suppose we designed our Linear Search function to return the 
actual value of the key. For the array [43, 27, 45, 24, 35, 47, 22, 
48], search(array, 22) would return 22. An important design 
consideration is this: What should it return if the value is not found 
in the array? Some approaches would return −1, but this would limit 
our search values to positive integers. What is needed is some type 
of sentinel value. This is another special value, unlike the ones we 
are storing. Another approach could be to throw an exception if the 
value is not found. There are many ways to address this problem, 
and this issue is an important one when storing more complex data 
types than just integers. 

Suppose we are working on a database of contact 
information for a student club. We would design a class or data type 
specification for the student records that we need to store in our 
data structures. Our Student class might look something like the 
code below: 
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Now think about storing an array of Student object 
instances in memory. The diagram below is one way to visualize this 
data structure: 

Figure 4.2 

Now suppose we want to search through our database for 
the student whose member_id is 22. If our student is in the array, 
we could just return the Student object. If there is no student with 
22 as their member_id, we run into the issues we mentioned above. 
All these issues create some difficulties in designing the interface 
of our search algorithm. A simple solution that could sidestep the 
problem would be to return either the index of the value or −1 
to indicate that the value was not found. For many programming 
languages, −1 is an invalid array index. 

Let us try our implementation of Linear Search one more 
time using the indexed approach and assume that our array holds a 
set of Student objects. 
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An example use of this implementation is given below. The 
programmer could access a student object safely (only if it was 
found) using the array index after the array has been searched. 

A slight variation on this idea comes from a slightly altered 
database. Rather than storing all our student records in continuous 
blocks of memory, we may have an array of references to our 
records. This would lead to a structure like that depicted in the 
following image: 
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Figure 4.3 

For this style of storage, our array holds references to 
instances rather than having the instances of objects stored in the 
array. Holding references rather than objects comes with some 
advantages in flexibility, but working with references puts more 
responsibility for memory management in the hands of the 
programmer. For the present search problem, working with 
references gives a nice solution to the “not found” problem. 
Specifically, we can return a null reference when our search fails to 
find an object with the matching search key. 

Suppose now that our database of students is an array of 
references to objects. Our implementation would look like this: 
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Using this implementation as before may look something 
like this: 

These examples will help you appreciate how simple design 
questions can lead to difficult issues when implementing your 
algorithm. Even without thinking about performance (in terms of 
Big-O complexity), design issues can impact the usability and 
usefulness of real-world software systems. Answering these design 
questions will inevitably impose constraints on how your algorithm 
can and will be used to solve problems in real-world contexts. It is 
important to carefully consider these questions and to understand 
how to think about answering them. 

Binary Search 

We have seen a method for searching for a particular item in an 
array that runs in O(n) time. Now we examine a classic algorithm to 
improve on this search time. The Binary Search algorithm improves 
on the runtime of Linear Search, but it requires one important 
stipulation. For Binary Search to work, the array items must be in 
a sorted order. This is an important requirement that is not cost-
free. Remember from the previous chapter that the most efficient 
general-purpose sorting algorithms run in O(n log n) time. So you 
may ask, “Is Binary Search worth the trouble?” The answer is yes! 
Well, it depends, but generally speaking, yes! We will return to the 
analysis of Binary Search after we have described the algorithm. 

The logic of Binary Search is related to the strategy of 
playing a number-guessing game. You may have played a version of 
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this game as a kid. The first player chooses a number between 1 and 
100, and the second player tries to guess the number. The guesser 
guesses a number, and the chooser reports one of the following 
three scenarios: 

1. The guesser guessed the chooser’s number and wins the 
game. 

2. The chooser’s number is higher than the guess, and the 
chooser replies, “My number is higher.” 

3. The chooser’s number is lower than the guess, and the 
chooser replies, “My number is lower.” 

An example dialogue for this game might go like this: 
Chooser: [chooses 37 in secret] “I have my number.” 
Guesser: “Is your number 78?” 
Chooser: “My number is lower.” 
Guesser: “Is your number 30?” 
Chooser: “My number is higher.” 
Guesser: “Is your number 47?” 
Chooser: “My number is lower.” 
Guesser: “Is your number 35?” 
Chooser: “My number is higher.” 
Guesser: “Is your number 40?” 
Chooser: “My number is lower.” 
Guesser: “Is your number 38?” 
Chooser: “My number is lower.” 
Guesser: “Is your number 37?” 
Chooser: “You guessed my number, 37!” 

With each guess, the guesser narrows down the possible 
range for the chooser’s number. In this case, it took 7 guesses, but if 
the guesser is truly guessing at random, it could take much longer. 
Where does Binary Search come in? Well, take a few moments to 
think about a better strategy for finding the right number. When the 
guesser guesses 78 and the chooser responds with “lower,” all values 
from 78 to 100 can be eliminated as possibilities. What strategy 
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would maximize the number that we eliminate each time? Maybe 
you have thought of the strategy by now. 

The optimal strategy would be to start with 50, which 
eliminates half of the numbers with one guess. If the chooser 
responds “lower,” the next guess should be 25, which again halves 
the number of possible guesses. This process continues to split 
the remaining values in half each time. This is the principle behind 
Binary Search, and the “binary” name refers to the binary split of the 
candidate values. This strategy works because the numbers from 1 
to 100 have a natural order. 

A precondition for Binary Search is that the elements of the 
array are sorted. The sorting allows each comparison in the array 
to be oriented, and it indicates in which direction to continue the 
search. Each check adds some new information for our algorithm 
and allows the calculation to proceed efficiently. 

We will present an illustration below of an example 
execution of the algorithm. Suppose we are searching for the key 27 
in the sorted array below: 

Figure 4.4 

We will keep track of three index variables to track the low 
and high ends of the range as well as a “mid” or middle variable that 
will track the middle value in the range. The mid variable will be the 
one currently considered for the key. In this case, 35 is too high, so 
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we will update the high end of the range. The high variable will be 
set to mid − 1, and we will recalculate the mid. 

Figure 4.5 

At this point in the execution, mid at 1 means we are 
considering the value 24. As 27 is greater than 24, we will now update 
the low variable to mid + 1 or 2. 

Next, we have the case where low equals high, and that 
means either we have found the key or the key does not exist. We 
see that 27 is in the array, and we would report that it is found. The 
image below gives this scenario: 

Figure 4.6 
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The game description and array example should give you 
an idea of how Binary Search can efficiently find keys in a sorted 
data structure. Let us examine an implementation of this algorithm. 
For our design, we will return the index of the value if it is found 
or −1 as an invalid index to indicate the key was not found. We will 
consider an array of integer keys, but it will work equally well with 
objects assuming they are sorted by their relevant keys. 

This is a subtle and powerful algorithm. It may take some 
thinking to understand. Think about when the algorithm would 
reach line 15. This means that the value at array[mid] is neither 
higher nor lower than the key. If it is not higher or lower, it must be 
the key! We return the index of the key in this case. 

The case of the key missing from the array is also subtle. 
How could the algorithm reach line 17? To reach line 17, low must 
be a value greater than high. How could this happen? Think back 
to our example above when low, high, and mid were all pointing to 
index 2 and we were searching for the key 27. Suppose instead of 
27 at position 2, the array had 25 at position 2, which still preserved 
the sorted order (22, 24, 25, 35, 43, 45, 47, 48). The algorithm would 
check “Is 27 less than 25?” at line 7. No, this is false. Next, it would 
check “Is 27 greater than 7?” at line 10. This is true, so low would be 
updated to mid + 1, or 3 in this case, and the loop would begin again. 
Only now, low is 3 and high is 2, and the loop condition fails and the 
return −1 at line 17 is reached. 
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Binary Search Complexity 

Now we will assess the complexity of Binary Search. The space 
complexity of Binary Search is O(1) or constant space. From another 
perspective, one might consider this auxiliary space and say that 
O(n) space is needed to hold the data. From our perspective, we 
will assume that the database is needed already for other purposes 
and not consider its O(n) space cost a requirement of Binary Search. 
We will only consider the space demand for the algorithm to be the 
few extra variables that serve as the array indexes. Specifically, our 
algorithm only uses the low, high, and mid indexes. We could also 
factor in a reference for the array’s position in memory and a copy of 
the key value. Even with these extra variables consuming space, only 
a constant amount of extra memory is needed, leaving the space 
complexity of the array-based Binary Search at O(1). 

The time complexity of Binary Search requires a bit of 
explanation, but the logic behind the proof is similar to arguments 
we have seen before (see “Powers of 2 in O(log n) Time” in chapter 
2 and “Merge Sort Complexity” in chapter 3). First, consider the 
best-case scenario. The best case would be if the key item is found 
at the mid position on the very first check. In our example above, 
this would occur if our key was 35, which is in position 3 (mid = 
floor((0 + 7) / 2) = 3). In the best case, the time complexity of Binary 
Search is O(1). This matches the best case for Linear Search. In 
the worst case, Binary Search must continue to update the range 
of possible locations for the key. This update process essentially 
eliminates half of the range each time our loop runs. This means 
that determining the Big-O complexity for Binary Search depends 
on determining how many times we can halve the range before 
reaching a single element. Here we have repeated division by two, 
which we should now know leads to O(log n). We will present this 
a little more formally below. Letting T(n) be the time cost in the 
number of operations for Binary Search on an array of N elements, 
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T(n)=c + T(n/2). 

Here c is a constant number of operations (making a 
comparison, updating a value, and so on; it may be different on 
different computer architectures). 

We can expand this like so: 

T(n)=c + (c + T(n/4)) 

=2c + T(n/22) 

=2c + (c + T(n/23)) 

=3c + T(n/23). 

This leads us to the following formula: 

T(n)=k*c + T(n/2k). 

Ultimately, repeatedly reducing the range of valid choices 
will lead to a single element that must be compared with the key. So 
we want to find the k that makes n/2k equal to 1. This value is log2 

n, which we will abbreviate to just log n. 
Substituting back into the equation gives the following: 

132  |  Search



T(n)=(log n)*c + T(n/2log n) 

=(log n)*c + T(n/n) 

=(log n)*c + c. 

We are left with a constant multiple of log n for a worst-case time 
complexity of O(log n). 

A time complexity of O(log n) is considered extremely fast 
in most contexts and is an excellent scaling bound for an algorithm. 
Consider a Linear Search with 1,000 items. That algorithm may have 
to make nearly 1,000 comparison checks to determine if the key is 
found. A Binary Search for a sorted array of 1,000 items needs to 
make only about 10 checks. For an array of 1,000,000 elements, the 
Linear algorithm may make nearly 1 million checks, while the Binary 
Search checks only about 20 in the worst case! That is an excellent 
improvement (1 million >> 20). 

Binary Search Complexity in Context 

We are all ready to celebrate and embrace the amazing properties 
of Binary Search with its O(log n) search time complexity, but there 
is a catch. As we mentioned, the array must be sorted, and typically 
we cannot do much better than O(n log n) for sorting (without 
some extra information). Would that mean that, in reality, Binary 
Search is O(n log n + log n) leading to O(n log n)? In a sense, yes. 
If we had to start from an unsorted array, we would need to first 
sort it. This would give us a sorting cost of O(n log n). Then any 
subsequent search on the data would only cost O(log n). This would 
make the total cost of Binary Search bounded by its most expensive 
operation, the sorting part. Oh no, Binary Search is actually O(n log 
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n)—all is lost! Well, let us use our analysis skills to try to determine 
why and when Binary Search would be more useful than Linear 
Search. 

The important realization is that sorting is a one-time cost. 
Once the array is sorted, all subsequent searches can be done in 
O(log n). Let us think about how this compares to Linear Search, 
which always has a cost of O(n) regardless of the number of the 
number of times the array is searched. Another name for the act of 
searching is called a query. A query is a question, and we are asking 
the data structure the question “Do you have the information we 
need?” Suppose that the variable Q is the number of queries that are 
made of the data structure. 

Querying our array using Linear Search Q times would give 
the following time cost with c being a constant associated with O(n): 

TLS(n, Q)=Q * c * n. 

Querying our array using Binary Search Q times would give the 
following cost: 

TBS(n. Q)=c*(n * log n) + Q * c * (log n). 

Now suppose that Q was close to the size of n. We could rewrite 
these like this: 
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T′LS(n)=n * c * n 

=c * n2. 

This leads to a time complexity of O(n2) for searching with 
approximately n different queries. 

For Binary Search, we have the following adjusted formula: 

T′BS(n)=c*(n * log n) + n * c * (log n) 

=2 * c * (n log n). 

This leads to a time complexity of O(n log n) for searching with 
approximately n different queries. 

This means that if you plan on searching the data structure 
n or more times, Binary Search is the clear winner in terms of 
scalability. 

As a final note, you should always try to run empirical 
tests on your workloads and hardware to draw conclusions about 
performance. Processor implementations on modern computers 
can further complicate these questions. For example, the CPU’s 
branch prediction and cache behavior may make Linear Search on 
a sorted list faster than some clever algorithmic search 
implementation in terms of actual runtimes. 
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Exercises 

1. Implement a Linear Search in your language of 
choice. Use the following plan to test your 
implementation on an array of 100 randomly generated 
values (in random order). Randomly generate 100 values, 
and use Linear Search to find the value 42. Have your 
search print the number of unsuccessful checks before 
finding the value 42 (or reporting not found). 

2
. Take the search function from exercise 1, and 

modify it to count and return the number of checks 
Linear Search takes to find the value 42 in a random array. 
Write a loop to repeat this experiment 100 times, and 
average the number of checks it takes to find a specific 
value. What is that number close to? How does it change 
if you increase the number of tests from 100 to 1,000? 

3
. The reasoning used to determine the time 

complexity of Binary Search closely resembles similar 
arguments from chapter 2 on recursion. Implement 
Binary Search as a recursive algorithm by adding extra 
parameters for the high and low variables. Make sure your 
function is tail-recursive to facilitate tail-call 
optimization. 

4
. With your implementations of Linear and Binary 

Search, write some tests to generate a number of random 
queries. Calculate the total time to conduct n/2 queries 
on a randomly generated dataset. Be sure to include the 
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sorting time for your Binary Search database before 
calculating the total time for all queries. Compare your 
result to the Linear Search total query time. Next, repeat 
this process for n, 2*n, and 4*n queries. At what number 
of queries does Sorting + Binary Search start to show an 
advantage over Linear Search? 
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5.  Linked Lists 

Learning Objectives 

After reading this chapter you will… 

• begin to understand how differences in data 
structures result in trade-offs and help when 
choosing which to apply in a real-world scenario. 

• begin to use links or references to build more 
complex data structures. 

• grasp the power and limitations of common arrays. 

Introduction 

You have a case of cola you wish to add to your refrigerator. Your 
initial approach is to add all colas to the refrigerator while still in 
the box. That way, when you want to retrieve a drink, they are all 
in the same place, making them easier to find. You will also know 
when you are running low because the box will be nearly empty. 
Storing them while still in the box clearly has some benefits. It does 
come with one major issue though. Consider a refrigerator filled 
with groceries. You may not have an empty spot large enough to 
accommodate the entire case of cola. However, if you open the case 
and store each can individually, you can probably find some spot for 
each of the 12 cans. You have now found a way to keep all cans cold, 
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but locating those cans is now more difficult than it was before. 
You are now faced with a trade-off: Would you rather have all cans 
cold at the cost of slower retrieval times or all cans warm on the 
counter with faster retrieval times? This leads to judgment calls, like 
deciding between how much we value a cold cola and how quickly 
we need to retrieve one. 

Our case of cola is like a data structure, and storing all cans 
in the box is analogous to an array. Just like the analogy, let us start 
by listing some of the desirable characteristics of arrays. 

• We know exactly how many elements reside in them, both now 
and in the future. We know this because (in most languages) 
we are required to specify the length explicitly. Also, most 
implementations of arrays do not allow us to simply resize as 
needed. As we will see soon, this can be both a beneficial 
feature and a constraint. 

• They are fast. Arrays are indexable data structures with 
lookups in constant time. In other words, if you have an array 
with 1,000 elements, getting the value at index 900 does not 
mean that you must first look at the first 899 elements. We can 
do this because array implementations rely on storage within 
contiguous blocks of memory. Those contiguous blocks have 
predictable and simple addressing schemes. If you are standing 
at the beginning of an array (say at address 0X43B), you can 
simply multiply 900 by the size of the element type stored in 
the array and look up the memory location that is that distance 
from the starting point. This can be done in constant time, 
O(1). 

These desirable characteristics are also constraints if you 
look at them from a different perspective. 

• Having an explicit length configured before you use the array 
does mean that we know the length without having to inspect 
the data structure, but it also means that we cannot add any 
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new elements once we reach the capacity of the array. For 
plenty of applications, we may not know the proper size before 
we begin processing. 

• Arrays are fast because they are stored in contiguous blocks of 
memory. However, for really large sets of data, it may be 
expensive (regarding time) or impossible (regarding space) to 
find a sufficiently large contiguous block of memory. In these 
cases, an array may perform poorly or not at all. 

It is clear that, under certain circumstances, arrays may not 
serve all our needs. We now have a motivation for new types of data 
structures, which bring with them new trade-offs. The first of these 
new data structures that we will consider is the linked list. 

Structure of Linked Lists 

Linked lists are the first of a series of reference-based data 
structures that we will study. The main difference between arrays 
and linked lists is how we define the structure of the data. With 
arrays, we assumed that all storage was contiguous. To locate the 
value at index 5, we simply take the address of the beginning of the 
array and add 5 times the size of the data type we are storing. That 
gives us the address of the data we wish to retrieve. Of course, most 
modern languages give us simpler indexing operators to accomplish 
the task, but the description above is essentially what happens at a 
lower level. 

Linked lists do not use contiguous memory, which implies 
that some other means of specifying a sequence must be used. 
Linked lists (along with trees and graphs in later chapters) all use 
the concept of a node, which references other nodes. By leveraging 
these references and adding a value (sometimes called a payload), 
we can create a data structure that is distinctive from arrays and has 
different trade-offs. 
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Figure 5.1 

When working with the linked list, the next element in the 
structure, starting from a given element, is determined by following 
the reference to the next node. In the example below, node a 
references (or points to) node b. To determine the elements in the 
structure, you can inspect the payloads as you follow the references. 
We follow these references until we find a null reference (or a 
reference that points to nothing). In this case, we have a linked list 
of length 2, which has the value 1 followed by the value 12. 
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Figure 5.2 

 
From a practical standpoint, implementations require that 

the chosen language have some sort of feature that allows for 
grouping the value with the reference. Most languages will 
accomplish this task with either structs or objects. For pseudocode 
examples, we will assume the following definition of a node. The 
payload is of type integer because it is convenient for the remainder 
of the chapter, but the data stored in the node can be of any type 
that is useful given some real-world circumstances. 

Let us consider the following explicitly defined list with 
powers of 3 as the values. The choice of values is intended to 
reinforce the sequential nature of the data structure and could have 
easily been any other well-known sequence. The critical step is 
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how the Next reference is assigned to subsequent nodes in lines 9, 
10, and 11. Later, we will define a procedure for inserting values at 
an arbitrary position, but for now, we will use a as our root. The 
resulting linked list is depicted in figure 5.3. 

Figure 5.3 
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Operations on Linked Lists 

Lookup (List Traversal) 

Continuing the comparison with arrays, our first task will be to look 
up the value at an arbitrary position relative to a particular node 
in a linked list. You may consider a position in a linked list as the 
analogue of an array’s index. It is the ordinal number for a specific 
value or node within the data structure. For the sake of consistency, 
we will use 0-based positions. 

We address lookup first because it most clearly illustrates 
the means by which we traverse the linked list. On line 2, we start 
with some node, then lines 3 and 4 step forward to the next node an 
appropriate number of times. Whenever we wish to insert, delete, or 
look up a value or simply visit each node, we must either iteratively 
or recursively follow the Next reference for the desired number of 
sequential nodes. 

Now that we have a means of looking up a value at an 
arbitrary position, we must consider how it performs. We start 
again by considering arbitrary index lookups in arrays. Recall that 
a lookup in an array is actually a single dereference of a memory 
address. Because dereferencing on an array is not dependent on the 
size of the array, the runtime for array lookups is O(1). However, to 
look up an arbitrary element in a linked list (say, the nth element), 
we must dereference n − 1 different addresses as we follow the Next 
reference. We now have a number of dereferences dependent on 
the length of the linked list. Specifically, our cost function of the 
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worst-case scenario will be f(n) = n − 1, where n is the length, which 
is clearly O(n). Dereferencing within some loop or with recursion is 
a featured pattern in nearly every linked list algorithm. Therefore, in 
most cases, we will expect these algorithms to run in O(n) time. 

Length (and Additional Means of Traversal) 

While it is the case that most list traversals are implemented with 
for-loops, there are occasions where other styles of traversal are 
more appropriate. For example, for-loops are ill-suited for scenarios 
where we do not know exactly how many times we must loop. 
As a result, while-loops are often used whenever all nodes must 
be visited. Consider the function below, which returns an integer 
representing the number of elements in the list starting at 
rootNode: 

Also worth noting is that, due to the self-referencing 
definition of the Node class, many list procedures are reasonably 
implemented using recursion. If you consider a given root node, the 
length of a linked list starting at that node will be the sum of 1 and 
the length of the list starting at the Next reference (the recursive 
case). The length of a list starting with a null node is 0 (the base 
case). 
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As we explore more algorithms in this book, we will 
discover that often recursive solutions drastically reduce the 
complexity of our implementation. However, we should pay close 
attention here. Because we dereference the Next node for every 
node visited, our solution still runs in O(n) time. 

Insert 

To create a general-purpose data structure, our next operation will 
be to insert new values at arbitrary positions within the linked list. 
For the sake of simplicity, this function assumes that the position is 
valid for the current length of the linked list. 

When reading and trying to comprehend this algorithm, we 
should pay close attention to three key things: 

• We again see a linear traversal through the list to a given 
position by traversing the Next reference. As usual, it does not 
matter whether this is achieved with a for-loop, a while-loop, 
or recursion, the result is still the same. We maneuver through 
a list by starting at some point and following the references to 
other nodes. This is an incredibly important concept, as it lays 
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the foundation for more interesting and useful data structures 
later in this book. 

• When implementing algorithms, edge cases sometimes require 
specific attention. This function is responsible for inserting the 
value at a desired position, regardless of whether that position 
is 0, 2, or 200. Inserting a value into the middle of a linked list 
means that we must set references for the prior’s Next as well 
as newNode.Next. Inserting at position 0 is fundamentally 
different in that there is no prior node. 

• More so than other statements, lines 14 and 15 may feel 
interchangeable. They are not. Much like the classic exchange 
exercise in many programming textbooks, executing these 
statements in the reverse order will lead to different behavior. 
It is a worthwhile exercise to consider what the outcome 
would be if they were switched. 

We can visually trace the following example of an insertion: 
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Figure 5.4 
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Next, we come to the runtime analysis of this function. Due 
to the linear traversal, we consider the algorithm itself to be of 
O(n) regardless of whether we are inserting at position 2 or 200. 
However, what if we want to insert at position 0? In this case, the 
number of operations required is not dependent on the length of 
the linked list, and therefore this specific case runs in O(1). When 
studying algorithms, we typically categorize using the worst-case 
scenario but may specify edge-case runtimes when appropriate. In 
other words, if we only ever care about inserting at the front of a 
linked list, we may consider this special case of insert to be an O(1) 
operation. 

Remove 

Now that we have seen how to traverse the list via the Next 
reference and rearrange those references to insert a new node, 
we are ready to address removal of nodes. We will continue to 
provide the root node and a position to the function. Also, because 
we might choose to remove the element at the 0 position, we will 
continue to return the root node of the resulting list. As with the 
insertAtPosition, we assume that the value for position is valid for 
this list. 
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Figure 5.5 

The result of the diagram above is that a traversal of the 
linked list will indeed include the values 8, 9, and 11 as desired. We 
should pay close attention to the node with value 10. Depending 
on the language we choose to implement linked lists, we may or 
may not be required to address this removed node. If the language’s 
runtime is memory managed, you may simply ignore the 
unreferenced node. In languages that rely on manual memory 
management, you should be prepared to deallocate the storage. The 
runtime for the algorithm, as a function of the length of the list, 
is still O(n), with the special case of position as 0 running again in 
constant time. 
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Doubly Linked Lists 

Consider a scenario where we want to track the sequence of 
changes to a shared document. Compared to arrays, a linked list 
can grow as needed and is better suited for the task. We choose 
to inspect the change at position 500 in the linked list at a cost of 
499 dereferences. We then realize we stepped two changes too far. 
We are actually concerned with change 498. We must then incur a 
cost of 497 dereferences to simply move backward two steps. The 
issue is that our nodes currently only point to the next value in the 
sequence and not the previous. Luckily, we can simply choose to 
include a Prior reference. 

Figure 5.6 

The choice to track prior nodes in addition to the next 
nodes does come with trade-offs. First, the size of each node stored 
is now larger. If we assume an integer is the same size as a reference, 
we have likely increased the size of each node stored by 50%. 
Depending on the needs of the application, constraints of the 
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physical device, and size of the linked list, this increase may or may 
not be acceptable. 

We also have more complicated (and technically slightly 
slower) functions for insertion and removal of nodes. See the 
pseudocode below for considerations in the general case. The case 
when position is 0 has also been omitted. Completing that case is an 
exercise at the end of this chapter. 

Reference Reassignment for Singly Linked 
List Insert 

Reference Reassignment for Doubly Linked 
List Insert 

If we would like to make use of a Prior reference, we now must 
maintain that value on each insertion and removal. At times it is 
as easy as setting a value on an object (line 2). Other times we 
have to introduce a new condition (line 4). In this case, we check 
newNode.Next against null because we may be inserting our new 
value at the end of the list, in which case, there will not be any node 
with Prior set to newNode. Doubly linked list insert now requires 
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as many as 5 operations where we only had 2 for singly linked lists. 
While this does mean that doubly linked list insert is technically 
slower, we only perform these operations once per function call. As 
a result, we have two functions that run in O(n) even though one is 
technically faster than the other. 

Returning to the change tracking example at the beginning 
of this section, we now have a means of moving forward and 
backward through our list of changes. If we wish to start our 
analysis of the change log at entry 500, it will indeed cost us 499 
dereferences to reach that node. However, once at that node, we 
can inspect entry 498 with a cost of 2 dereferences by following the 
Prior reference. 

Augmenting Linked Lists 

Just as we saw when inserting or removing at position 0, we can 
often find clever ways to improve certain behaviors of linked lists. 
These improvements may lead to better runtimes or simply have a 
clearer intent. In this section, we will consider the most common 
ways linked lists are augmented. Generally speaking, we will follow 
the same strategy used for doubly linked lists. The main principle is 
this: At the time that we know some useful bit of information, we 
will choose to simply save it for later. This will lead to a marginally 
higher cost for certain operations and a larger amount of data to 
store, but certain operations will become much faster. 

So far in this chapter, we have implicitly defined a list as 
a single node representing the root element. To augment our data 
structure, we will now more formally define the full concept of a list 
as follows. For the definition of this class, we can choose to use a 
singly or doubly linked node. For simplicity, examples in this section 
return to using a singly linked node. 
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As was the case with doubly linked lists, our insert and 
remove code is now substantially more complicated. One nice 
benefit is that we now modify the list object and no longer need to 
return the root node. 

For each insert into the list, we must now maintain some 
new values on the list object. Lines 7, 8, 11, and 22 help keep track 
of when we have changed the head or tail of the list. Line 24 runs 
regardless of where the value was inserted because we now have 
one more element in the list. 

This extra work was not in vain. Consider what was 
required if we wanted to write a function to return the last element 
of a linked list represented by the root node compared to running it 
on a list object. 
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Last Element Using Root Node and Next 
References 

Last Element Using the List and Tail 
References 

The same improvements can be seen in retrieving the length of a 
list. 

Length Using Root Node and Next 
References 

Linked Lists  |  155



Length Using the List and Length Values 

Abstract Data Types 

Before closing this chapter on linked lists, we benefit from 
considering abstractions. An abstract data type (ADT) is a collection 
of operations we want to perform on a given data type. Just as we 
can imagine numerous implementations for a given data structure 
(maybe we change a for-loop to a while-loop or recursion), we can 
also imagine numerous data structures that satisfy an ADT. 

Consider the operations defined above for linked lists. We 
often want to insert, delete, count, and iterate over list elements. 
We call this set of operations a list ADT. A list may be implemented 
using linked nodes, an array, or some other means. However, it 
must provide these four operations. Implied in this description of 
ADTs is the fact that we cannot discuss the asymptotic runtime 
or space requirements of an ADT. Without knowing how the ADT 
is implemented, we cannot conclude much (if anything) about the 
runtime. For example, we could conclude that iteration is no better 
than O(n) because iteration requires us to touch each element 
regardless of implementation. We could not determine anything 
about the runtime of lookup because an array would be O(1), a linked 
list O(n), and a skip list O(log n). This last data structure is not 
formally covered in this chapter. 

In subsequent chapters, we will at times refer to ADTs 
without specifying the precise data structure. In doing so, we will 
be able to focus on the new data structure without concern for how 
the ADT is implemented. Naturally, when we address the runtimes 
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and space utilization of those algorithms, we must choose between 
data structures. 

 

Exercises 

1. Write three functions that print all values in a singly 
linked list. Write one using each of the following: for-loop, 
while-loop, and recursion. 

2. Write a removeAtPosition function for a doubly 
linked list that correctly maintains the Prior reference 
when the removal occurs at position 0, length − 1, or some 
arbitrary position in between. 

3. Write a removeAtPosition function for a singly linked 
list that correctly maintains the Head and Tail references 
when the removal occurs at position 0, length − 1, or some 
arbitrary position between. 
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6.  Stacks and Queues 

Learning Objectives 

After reading this chapter you will… 

• learn how data structures can help facilitate the 
orderly processing of organized data. 

• learn the basic operations of stacks and queues. 
• learn how abstract data types help us define 

concepts while delaying implementation details. 

Introduction 

Consider reading an article on Wikipedia. You read until you 
encounter an unfamiliar term, then you click it to open a new 
article. You continue this process until you have several pages open 
simultaneously. Then you receive a phone call. It is a close friend, 
and you choose to derail your studies for a few minutes. After your 
chat, you return to your browser and try to pick up where you left 
off. You find a series of tabs open. The tab farthest to the left was 
your original article. The tab farthest to the right was the most 
recent. The tabs between occur in the order in which you clicked 
related articles. 

You decide you must be as systematic as possible as you get 
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back to your train of thought. Should you start at the leftmost or 
rightmost tab? What can we determine about these options? 

• Left-to-right: In this strategy, you choose to go back to 
reading the original article you opened. After all, it was the 
most important when you sat down to start your research, so 
you should probably get started there. Then as needed, you 
can continue to work through other tabs. If you choose this 
strategy, it is because you assume that you had opened tabs 
because you might be interested in them later. 

• Right-to-left: In this strategy, you assume that you opened 
“Formal system” because you wanted to understand it better 
while reading “Decidability (logic),” which was open because 
you were reading “Decision problem.” If you choose this 
strategy, it is because you assume that you opened each 
additional tab due to some context present in the prior tab. 

Both strategies share some commonalities. New 
information was encountered in some sort of linear fashion. The 
choice is which to prioritize. Is it important to process the 
information in the order it was received? Or is it more important to 
process the most recent information first? Here we have a problem 
with two reasonable solutions depending on our original 
expectations and desired outcome. 

These options reflect two related but distinct abstractions. 
Both queues and stacks store values in a sequential manner in the 
order in which they arrived. A queue processes the input that 
arrived first before that which arrived second. For this reason, we 
consider queues to have a first-in-first-out (or FIFO) property. A 
stack instead processes the most recently received input first. 
Likewise, we consider stacks to have a last-in-first-out (or LIFO) 
property. 

Queues are always present in our natural life. Whenever 
we “line up” for something, we have formed a queue. Queues have 
a visceral fairness about them. Those who arrived at the grocery 
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store checkout first are served first. Those in line earlier for that 
big movie premiere are more likely to get seats. Queues are also 
convenient because they preserve a temporal sequence. Consider 
a system like a document editor. You specify changes to the 
document, and those changes are made. These must be processed 
in the order they are received because one change is likely 
dependent on whether the prior has been completed. 

However, queues are not always the most expressive way 
to process a stream of data. Consider the call stack from our prior 
investigation of recursion in chapter 2. Each new function call 
encountered is processed within the context of the function call 
that came prior. While it is true that some other function call came 
before that, we are more concerned with maintaining the 
contextual reference rather than the temporal one. Stacks are also 
convenient when no implied order or precedence is required. In 
that case, inserting and retrieving data from the same end of the 
structure (LIFO) is often more efficient than the FIFO alternative. 

You may have noticed that we have not explicitly referred 
to stacks and queues as data structures. While the term “data 
structure” may be considered appropriate for queues and stacks, 
a more appropriate description would be abstract data type. This 
distinction will be the first topic of this chapter. 

Abstract Data Types 

With linked lists, we described desired operations alongside a 
specific structure that satisfies that behavior. At times it is beneficial 
to decouple the two. The nodes represented the data structure, 
while the set of desired operations (such as insertion and deletion) 
formed what is called the abstract data type (ADT). 

In this chapter, we define queues and stacks as abstract 
data types before specifying underlying data structures. Different 
reference texts specify slightly different operations. For the 
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purposes of this text, we define queue and stack with three defined 
operations: 
Queue 

• enqueue: places an element at the tail of the queue 
• dequeue: removes the next available element from the head of 

the queue 
• isEmpty: returns true or false depending on whether the 

underlying data structure has any remaining elements 

Stack 

• push: places an element at the top of a stack 
• pop: removes an element from the top of a stack 
• isEmpty: returns true or false depending on whether the 

underlying data structure has any remaining elements 

We have three important nuances thus far: 

1. We have not specified exactly how we intend to guarantee 
these operations or how we will store elements until we 
dequeue or pop them. 

2. The above definitions use words like head, tail, and top. From 
one text to another, these words may change. The important 
part is that queues have elements entering on one end and 
leaving from the other. Stacks have elements entering and 
leaving from the same orientation. 

3. We cannot yet specify the runtime of any of these operations. 
We can only do so once the actual underlying data structures 
have been specified. 

In the following sections, we illustrate how these 
operations can be satisfied with linked lists or arrays. 
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Linked Lists 

Linked lists are well suited for both queues and stacks. First, adding 
and removing elements is simply a matter of creating a node and 
setting a reference or removing a reference. Second, we have a 
fairly intuitive means of tracking both ends of the data structure. 
For purposes of this section, we will assume a singly linked node 
discussed earlier in this book. 
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Figure 6.1 

First, assess the runtime of each operation. Most 
operations on linked lists are O(n) due to the fact we have to 
traverse lists one node reference at a time. In this special case of 
queues and stacks, no traversal is necessary as long as we maintain 
a reference to the head or tail. No matter how many elements we 
enqueue or push, we only ever care about one or two nodes at any 
given time. The result is an elegant solution that runs in O(1) time 
for most operations. 

Our analysis is not yet complete though, as we must also 
consider space. Considering that we are working with singly linked 
nodes, each has a reference and a value. If we want to store 100 
integers in our queue or stack, we must have a node for each. Again, 
assuming that a reference is the same size as an integer, we result in 
a data structure with twice the overall storage footprint of the data 
itself. We do, however, still have the slight benefit that it does not 
have to be stored in contiguous memory locations. 
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Arrays 

Just as we chose to implement a queue and a stack with a linked 
list, we could likewise choose to store the data in an array. As long 
as we have definitions for all operations that satisfy the operations 
specified for the ADT, the result will be just as effective. 

Before defining the data structure, we should address the 
primary challenge when creating array-based queues and stacks. 
Arrays have a fixed length. Operations on queues and stacks are 
primarily about adding or removing elements from the underlying 
structure. How can we use a fixed-length data structure to 
implement an ADT that necessitates change? The answer typically 
involves some clever tricks. We define the data structures below and 
then systematically walk through these tricks: 

164  |  Stacks and Queues



Figure 6.2 

Storage Allocation Considerations 

How can we ensure we have enough space in our array for the next 
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invocation of enqueue or push? The typical strategy is to initially 
allocate an array with some amount of excess capacity then 
reallocate and copy to a larger array as needed. In the QueueArray 
and StackArray classes, these reallocations occur at lines 11 and 9. 
This challenge is a balancing act. On one hand, allocating too much 
space results in waste, as it cannot be used for other purposes while 
it is part of the allocated array. On the other hand, allocating too 
little results in more frequent reallocations. This creates issues in 
two ways. 

First, when reallocation is required, our constant-time 
enqueue or push operation momentarily becomes O(n) with regard 
to the number of elements stored. From a big-picture perspective, 
this is not a major issue. Recall from chapter 1 that infrequently 
required additional steps permit us to talk in terms of amortized 
cost. The reallocation is indeed expensive but happens so 
infrequently that other enqueue or push invocations essentially 
absorb that cost. The result is in an amortized runtime of O(1) for 
these two operations. 

Amortized runtimes do not always tell the same story as 
nonamortized. In both cases, we can generally expect an invocation 
to complete efficiently regardless of the number of elements in 
the queue or stack. The key word here is generally. Consider an 
application that is responsible for processing a queue with large 
volumes of real-time data. It may successfully invoke enqueue 
hundreds of times with a runtime between 5 and 15 milliseconds. A 
problem arises when the application is dependent on this level of 
performance because, at some point, an enqueue might trigger a 
reallocation and instead complete in 500 milliseconds. 

The second issue with reallocations pertains to space 
usage. Not only are we regularly wasting space, but the reallocation 
itself temporarily consumes excess memory. If we are reallocating 
and copying from one large array to another, there is a small window 
of time where the original array and the new array are both 
consuming precious contiguous blocks of memory. These blocks 
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can be expensive to allocate and even create failures in cases where 
a large enough contiguous block is not available. 

Another clever trick can be applied to queues. Consider 
what happens when we have an initial array of length 10. We then 
enqueue and dequeue 10 elements, shifting our head and tail 
indexes to the end of the array. Our next enqueue will trigger a 
reallocation even though we are not currently using all 10 spots in 
our current array. We have the required space allocated but no clear 
means to access it. The trick lies in how we index into the array. 
Instead of using tailPos and headPos alone, we still use them but 
modulo the size of the array. If we do so, our eleventh enqueue and 
dequeue will use index 10. The result of 10 modulo 10 is 0 and will 
result in the usage of array position 0. The twelfth enqueue will use 
index 11, which becomes 1 after modulo 10. Following this strategy 
(often referred to as wrapping around), we can continue to reuse the 
original space allocated if our dequeue rate does not lag behind our 
enqueue rate. 
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Figure 6.3 

Practical Considerations 

At the end of the last section, we devised a clever solution to 
improve the utilization of space already allocated. Although it has 
improved the data structure on the whole, it now creates a new 
issue. We now need a new means of determining when to reallocate 
the array. This can be addressed by keeping an explicit count of 
how many array elements are currently being used. However, once 
we have solved that issue, we must then decide how to handle 
headPos and tailPos. We had relied on using them modulo the size 
of the array, but now that size has changed. This is the nature of 
data structures. We often perceive them as static constructs that 
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we study, memorize, and reimplement in new languages. In reality, 
they are dynamic and evolve as we apply basic concepts to novel 
problems. 

It is also often the case that ADTs and data structures do 
not exist in isolation. Many languages blend queues and stacks with 
lists into a single data type. C++ vectors, JavaScript arrays, and 
Python lists all implement certain operations of these three ADTs 
(queues, stacks, and lists). 

Again, specifying operations in an ADT does not necessarily 
imply any underlying structure. How, then, do these languages store 
sequential data? The process typically follows a narrative similar 
to that of wrapping around in array-based queues. A developer 
desires some traits of a clever solution, but implementing such a 
solution then leads to a new set of challenges. Working through 
these challenges requires both in-depth theoretical knowledge and 
a grasp of the real-world system. Once considering that real-world 
context, where modern memory is abundant and constant-time 
lookups are strongly desirable, most sequential data types make 
heavier use of arrays than linked lists. 

 

Exercises 

1. In your choice of high-level language, implement 
stack and queue with a built-in sequential data type (such 
as List for Python or Vector for C++). What operations did 
you use on that data type? Research your language’s 
documentation to determine the runtime of your 
enqueue, dequeue, push, and pop operations. 

2. The wraparound trick applied to array-based queues 
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only works if the application dequeues at least as fast as it 
enqueues. Describe real-world scenarios where we 
expect this might be true. 
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7.  Hashing and Hash Tables 

Learning Objectives 

After reading this chapter you will… 

• understand what hash functions are and what they 
do. 

• be able to use hash functions to implement an 
efficient search data structure, a hash table. 

• understand the open addressing strategy for 
implementing hash tables. 

• understand the potential problems with using hash 
functions for searching. 

• be able to implement a hash table using data 
structure composition and the separate chaining 
strategy. 

Introduction 

In chapter 4, we explored a very important class of problems: 
searching. As the number of items increases, Linear Search becomes 
very costly, as every search costs O(n). Additionally, the real-world 
time cost of searching increases when the number of searches (also 
called queries) increases. For this reason, we explored sorting our 
“keys” (our unique identifiers) and then using Binary Search on data 
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sets that get searched a lot. Binary Search improves our 
performance to O(log n) for searches. In this chapter, we explore 
ways to further improve search to approximately O(1) or constant 
time on average. There are some considerations, but with a good 
design, searches can be made extremely efficient. The key to this 
seemingly magic algorithm is the hash function. Let’s explore 
hashes a bit more in-depth. 

Hash Functions 

If you have ever eaten breakfast at a diner in the USA, you were 
probably served some hash browns. These are potatoes that have 
been very finely chopped up and cooked. In fact, this is where the 
“hash” of the hash function gets its name. A hash function takes a 
number, the key, and generates a new number using information in 
the original key value. So at some level, it takes information stored 
in the key, chops the bits or digits into parts, then rearranges or 
combines them to generate a new number. The important part, 
though, is that the hash function will always generate the same 
output number given the input key. There are many different types 
of hash functions. Let’s look at a simple one that hashes the key 137. 
We will use a small subscript of 2 when indicating binary numbers. 
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Figure 7.1 

We can generate hashes using strings or text as well. We 
can extract letters from the string, convert them to numbers, and 
add them together. Here is an example of a different hash function 
that processes a string: 

Figure 7.2 

There are many hash functions that can be constructed for 
keys. For our purposes, we want hash functions that exhibit some 
special properties. In this chapter, we will be constructing a lookup 
table using hashes. Suppose we wanted to store student data for 
100 students. If our hash function could take the student’s name as 
the key and generate a unique index for every student, we could 
store all their data in an array of objects and search using the hash. 
This would give us constant time, or O(1), lookups for any search! 
Students could have any name, which would be a vast set of possible 
keys. The hash function would look at the name and generate a valid 
array index in the range of 0 to 99. 

The hash functions useful in this chapter map keys from 
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a very large domain into a small range represented by the size of 
the table or array we want to use. Generally, this cannot be done 
perfectly, and we get some “collisions” where different keys are 
hashed to the same index. This is one of the main problems we 
will try to fix in this chapter. So one property of the hash function 
we want is that it leads to few collisions. Since a perfect hash is 
difficult to achieve, we may settle for an unbiased one. A hash 
function is said to be uniform if it hashes keys to indexes with 
roughly equal probability. This means that if the keys are uniformly 
distributed, the generated hash values from the keys should also 
be roughly uniformly distributed. To state that another way, when 
considered over all k keys, the probability h(k) = a is approximately 
the same as the probability that h(k) = b. Even with a nice hash 
function, collisions can still happen. Let’s explore how to tackle 
these problems. 

Hash Tables 

Once you have finished reading this chapter, you will understand 
the idea behind hash tables. A hash table is essentially a lookup table 
that allows extremely fast search operations. This data structure 
is also known as a hash map, associative array, or dictionary. Or 
more accurately, a hash table may be used to implement associative 
arrays and dictionaries. There may be some dispute on these exact 
terms, but the general idea is this: we want a data structure that 
associates a key and some value, and it must efficiently find the 
value when given the key. It may be helpful to think of a hash table 
as a generalization of an array where any data type can be used as 
an index. This is made possible by applying a hash function to the 
key value. 

For this chapter, we will keep things simple and only use 
integer keys. Nearly all modern programming languages provide a 
built-in hash function or several hash functions. These language 
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library–provided functions can hash nearly all data types. It is 
recommended that you use the language-provided hash functions 
in most cases. These are functions that generally have the nice 
properties we are looking for, and they usually support all data types 
as inputs (rather than just integers). 

A Hash Table Using Open Addressing 

Suppose we want to construct a fast-access database for a list of 
students. We will use the Student class from chapter 4. We will 
slightly alter the names though. For this example, we will use the 
variable name key rather than member_id to simplify the code and 
make the meaning a bit clearer. 

We want our database data structure to be able to support 
searches using a search operation. Sometimes the term “find” is 
used rather than “search” for this operation. We will be consistent 
with chapter 4 and use the term “search” for this operation. As the 
database will be searched frequently, we want search to be very 
efficient. We also need some way to add and remove students from 
the database. This means our data structure should support the add 
and remove operations. 

The first strategy we will explore with hash tables is known 
as open addressing. This means that we will allot some storage 
space in memory and place new data records into an open position 
addressed by the hash function. This is usually done using an array. 
Let the variable size represent the number of positions in the array. 
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With the size of our array known, we can introduce a simple hash 
function where mod is the modulo or remainder operator. 

This hash function maps the key to a valid array index. This 
can be done in constant time, O(1). When searching for a student in 
our database, we could do something like this: 

This would ensure a constant-time search operation. There 
is a problem, though. Suppose our array had a size of 10. What would 
happen if we searched for the student with key 18 and another 
student with key 28? Well, 18 mod 10 is 8, and 28 mod 10 is 8. This 
simple approach tries to look for the same student in the same array 
address. This is known as a collision or a hash collision. 
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Figure 7.3 

We have two options to deal with this problem. First, we 
could use a different hash function. There may be another way 
to hash the key to avoid these collisions. Some algorithms can 
calculate such a function, but they require knowledge of all the 
keys that will be used. So this is a difficult option most of the 
time. The second alternative would be to introduce some policy for 
dealing with these collisions. In this chapter, we will take the second 
approach and introduce a strategy known as probing. Probing tries 
to find the correct key by “probing” or checking other positions 
relative to the initial hashed address that resulted in the collision. 
Let’s explore this idea with a more detailed example and 
implementation. 

Open Addressing with Linear Probing 

Let us begin by specifying our hash table data structure. This class 
will need a few class functions that we will specify below, but first 
let’s give our hash table some data. Our table will need an array of 
Student records and a size variable. 

To add new students to our data structure, we will use an 
add function. There is a simple implementation for this function 
without probing. We will consider this approach and then improve 
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on it. Assume that the add function belongs to the HashTable class, 
meaning that table and size are both accessible without passing 
them to the function. 

Once a student is added, the HashTable could find the 
student using the search function. We will have our search function 
return the index of the student in the array or −1 if the student 
cannot be found. 

This approach could work assuming our hash was perfect. 
This is usually not the case though. We will extend the class to 
handle collisions. First, let’s explore an example of our probing 
strategy. 

Probing 

Suppose we try to insert a student, marked as “A,” into the database 
and find that the student’s hashed position is already occupied. 
In this example, student A is hashed to position 2, but we have a 
collision. 
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Figure 7.4 

With probing, we would try the next position in the probe 
sequence. The probe sequence specifies which positions to try next. 
We will use a simple probe sequence known as linear probing. 
Linear probing will have us just try the next position in the array. 

Figure 7.5 
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This figure shows that first we get a collision when trying 
to insert student A. Second, we probe the next position in the array 
and find that it is empty, so student A is inserted into this array 
slot. If another collision happens on the same hash position, linear 
probing has us continue to explore further into the array and away 
from the original hash position. 

Figure 7.6 

This figure shows that another collision will require more 
probing. You may now be thinking, “This could lead to trouble.” You 
would be right. Using open addressing with probing means that 
collisions can start to cause a lot of problems. The frequency of 
collisions will quickly lead to poor performance. We will revisit this 
soon when we discuss time complexity. For now, we have a few 
other problems with this approach. 

Add and Search with Probing 

Let us tackle a relatively simple problem first. How can we 
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implement our probe sequence? We want our hash function to 
return the proper hash the first time it is used. If we have a collision, 
our hash needs to return the original value plus 1. If we have two 
collisions, we need the original value plus 2, and so on. For this, we 
will create a new hashing function that takes two input parameters. 

With this function, hash(2,2) would give the value 4 as in the 
previous figure. In that example, when trying to insert student B, we 
get an initial collision followed by a second collision with student A 
that was just inserted. Finally, student B is inserted into position 4. 

Did you notice the other problem? How will we check to 
see if the space in the array is occupied? There are a variety of 
approaches to solving this problem. We will take a simple approach 
that uses a secondary array of status values. This array will be used 
to mark which table spaces are occupied and which are available. 
We will add an integer array called status to our data structure. 
This approach will simplify the code and prepare our HashTable 
to support remove (delete) operations. The new HashTable will be 
defined as follows: 

We will assign a status value of 0 to an empty slot and a 
value of 1 to an occupied slot. Now to check if a space is open and 
available, the code could just check to see if the status value at that 
index is 0. If the status is 1, the position is filled, and adding to 
that location results in a collision. Now let’s use this information to 
correct our add function for using linear probing. We will assume 
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that all the status values are initialized with 0 when the HashTable 
is constructed. 

Now that we can add students to the table, let us develop 
the search function to deal with collisions. The search function will 
be like add. For this algorithm, status[index] should be 1 inside the 
while-loop, but we will allow for −1 values a bit later. This is why 0 is 
not used here. 

We need to discuss the last operation now: remove. The 
remove operation may also be called delete in some contexts. The 
meaning is the same though. We want a way to remove students 
from the database. Let’s think about what happens when a student 
is removed from the database. Think back to the collision example 
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where student B is inserted into the database. What would happen 
if A was removed and then we searched for B? 

Figure 7.7 

If we just marked a position as open after a remove 
operation, we would get an error like the one illustrated above. With 
this sequence of steps, it seems like B is not in the table because 
we found an open position as we searched for it. We need to deal 
with this problem. Luckily, we have laid the foundation for a simple 
solution. Rather than marking a deleted slot as open, we will give 
it a deleted status code. In our status array, any value of −1 will 
indicate that a student was deleted from the table. This will solve the 
problem above by allowing searches to proceed past these deleted 
positions in the probe sequence. 

The following function can be used to implement the 
remove function. This approach relies on our search function that 
returns the correct index. Notice how the status array is updated. 
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Depending on your implementation, you may also want to 
free the memory at table[index] at line 5. We are assuming that 
student records are stored directly in the array and will be 
overwritten on the next add operation for that position. If 
references are used, freeing the data may need to be explicit. 

Take a careful look back at the search function to convince 
yourself that this is correct. When the status is −1, the search 
function should proceed through past collisions to work correctly. 
We now have a correct implementation of a hash table. There are 
some serious drawbacks though. Let us now discuss performance 
concerns with our hash table. 

Complexity and Performance 

We saw that adding more students to the hash table can lead to 
collisions. When we have collisions, the probing sequence places the 
colliding student near the original student record. Think about the 
situation below that builds off one of our previous examples: 

Figure 7.8 
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Suppose that we try to add student C to the table and C’s 
key hashes to the index 3. No other student’s key hashes to position 
3, but we still get 2 collisions. This clump of records is known as a 
cluster. You can see that a few collisions lead to more collisions and 
the clusters start to grow and grow. In this example, collisions now 
result if we get keys that hash to any index between 2 and 5. 

What does this mean? Well, if the table is mostly empty 
and our hash function does a decent job of avoiding collisions, then 
add and search should both be very efficient. We may have a few 
collisions, but our probe sequences would be short and on the 
order of a constant number of operations. As the table fills up, 
we get some collisions and some clusters. Then with clustering, 
we get more collisions and more clustering as a result. Now our 
searches are taking many more operations, and they may approach 
O(n) especially when the table is full and our search key is not 
actually in the database. We will explore this in a bit more detail. 

A load factor is introduced to quantify how full or empty 
the table is. This is usually denoted as α or the Greek lowercase 
alpha. We will just use an uppercase L. The load factor can be 
defined as simply the ratio of added elements to the total capacity. 
In our table, the capacity is represented by the size variable. Let n 
be the number of elements to be added to the database. Then the 
overall load factor for the hash table would be L = n / size. For our 
table, L must be less than 1, as we can only store as many students 
as we have space in the array. 

How does this relate to runtime complexity? Well, in the 
strict sense, the worst-case performance for searches would be 
O(n). This is represented by the fact that when the table is full, we 
must check nearly all positions in the table. On the other hand, 
our analysis of Quick Sort showed that the expected worst-case 
performance can mean we get a very efficient and highly useful 
algorithm even if some cases may be problematic. This is the case 
with hash tables. Our main interest is in the average case 
performance and understanding how to avoid the worst-case 
situation. This is where the load factor comes into play. Donald 
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Knuth is credited with calculating the average number of probes 
needed for linear probing in both a successful search and the more 
expensive unsuccessful search. Here, a successful search means 
that the item is found in the table. An unsuccessful search means 
the item was searched for but not found to be in the table. These 
search cost values depend on the L value. This makes sense, as 
a mostly empty table will be easy to insert into and yield few 
collisions. 

The expected number of probes for a successful search 
with linear probing is as follows: 

For unsuccessful searches, the number of probes is larger: 
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Let’s put these values in context. Suppose our table size is 
50 and there are 10 student records inserted into the table giving 
a load factor of 10/50 = 0.2. This means on average a successful 
search needs 1.125 probes. If the table instead contains 45 students, 
we can expect an average of 5.5 probes with an L of 45/50 = 0.9. 
This is the average. Some may take longer. The unsuccessful search 
yields even worse results. With an L of 10/50 = 0.2, an unsuccessful 
search would yield an average of 1.28 probes. With a table of lead L 
= 45/50 = 0.9, the average number of probes would be 50.5. This is 
close to the worst-case O(n) performance. 

We can see that the average complexity is heavily 
influenced by the load factor L. This is true of all open addressing 
hash table methods. For this reason, many hash table data 
structures will detect that the load is high and then dynamically 
reallocate a larger array for the data. This increases capacity and 
reduces the load factor. This approach is also helpful when the table 
accumulates a lot of deleted entries. We will revisit this idea later 
in the chapter. Although linear probing has some poor performance 
at high loads, the nature of checking local positions has some 
advantages with processor caches. This is another important idea 
that makes linear probing very efficient in practice. 

The space complexity of a hash table should be clear. We 
need enough space to store the elements; therefore, the space 
complexity is O(n). This is true of all the open addressing methods. 

Other Probing Strategies 

One major problem with linear probing is that as collisions occur, 
clusters begin to grow and grow. This blocks other hash positions 
and leads to more collisions and therefore more clustering. One 
strategy to reduce the cluster growth is to use a different probing 
sequence. In this section, we will look at two popular alternatives 
to linear probing. These are the methods of quadratic probing and 
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double hashing. Thanks to the design of our HashTable in the 
previous section, we can simply define new hash functions. This 
modular design means that changing the functionality of the data 
structure can be done by changing a single function. This kind of 
design is sometimes difficult to achieve, but it can greatly reduce 
repeated code. 

Quadratic Probing 

One alternative to linear probing is quadratic probing. This 
approach generates a probe sequence that increases by the square 
of the number of collisions. One simple form of quadratic probing 
could be implemented as follows: 

The following illustration shows how this might improve on 
the problem of clustering we saw in the section on linear probing: 
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Figure 7.9 

With one collision, student A still maps to position 3 
because 2 + 12 = 3. When B is mapped though, it results in 2 
collisions. Ultimately, it lands in position 6 because 2 + 22 = 6, as the 
following figure shows: 

Figure 7.10 
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When student C is added, it will land in position 4, as 3 + 12 

= 4. The following figure shows this situation: 

Figure 7.11 

Now instead of one large primary cluster, we have two 
somewhat smaller clusters. While quadratic probing reduces the 
problems associated with primary clustering, it leads to secondary 
clustering. 

One other problem with quadratic probing comes from the 
probe sequence. Using the approach we showed where the hash 
is calculated using a formula like h(k) + c2, we will only use about 
size/2 possible indexes. Look at the following sequence: 1, 4, 9, 16, 
25, 36, 49, 64, 81, 100, 121, 144. Now think about taking these values 
after applying mod 10. We get 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4. These give 
only 6 unique values. The same behavior is seen for any mod value 
or table size. For this reason, quadratic probing usually terminates 
once the number of collisions is half of the table size. We can make 
this modification to our algorithm by modifying the probing loop in 
the add and search functions. 

For the add function, we would use 
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For the search function, we would use 

When adding, it is assumed that encountering size/2 
collisions means that the table is full. It is possible that this is 
incorrect. There may be open positions available even after 
quadratic probing has failed. If attempting to add fails, it is a good 
indicator that the load factor has become too high anyway, and the 
table needs to be expanded and rebuilt. 

Double Hashing 

In this section, we will look at an implementation of a hashing 
collision strategy that approaches the ideal strategy for an open 
addressed hash table. We will also discuss how to choose a good 
table size such that our hash functions perform better when our 
keys do not follow a random uniform distribution. 
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Choosing a Table Size 

So far, we have chosen a table size of 10 in our examples. This 
has made it easy to think about what hash value is generated from 
a base-10 numerical key. This would be fine assuming our key 
distribution was truly uniform in the key domain. In practice, keys 
can have some properties that result in biases and ultimately 
nonuniform distributions. Take, for example, the use of a memory 
address as a key. On many computer systems, memory addresses 
are multiples of 4. As another example, in English, the letter “e” 
is far more common than other letters. This might result in keys 
generated from ASCII text having a nonuniform distribution. 

Let’s look at an example of when this can become a 
problem. Suppose we have a table of size 12 and our keys are all 
multiples of 4. This would result in all keys being initially hashed to 
only the indexes 0, 4, or 8. For both linear probing and quadratic 
probing, any key with the initial hash value will give the same 
probing sequence. So this example gives an especially bad situation 
resulting in poor performance under both linear probing and 
quadratic probing. Now suppose that we used a prime number 
rather than 12, such as 13. The table below gives a sequence of 
multiples of 4 and the resulting mod values when divided by 12 and 
13. 
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Figure 7.12 

It is easy to see that using 13 performs much better than 
12. In general, it is favored to use a table size that is a prime value. 
The approach of using a prime number in hash-based indexing 
is credited to Arnold Dumey in a 1956 work. This helps with 
nonuniform key distributions. 

Implementing Double Hashing 

As the name implies, double hashing uses two hash functions rather 
than one. Let’s look at the specific problem this addresses. Suppose 
we are using the good practice of having size be a prime number. 
This still cannot overcome the problem in probing methods of 
having the same initial hash index. Consider the following situation. 
Suppose k1 is 13 and k2 is 26. Both keys will generate a hashed value 
of 0 using mod 13. The probing sequence for k1 in linear probing is 
this: 
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h(k1,0) = 0, h(k1,1) = 1, h(k1,2) = 2, and so on. The same is 
true for k2. 

Quadratic probing has the same problem: 

hQ(k1, 0) = 0, hQ(k1, 1) = 1, hQ(k1, 2) = 2. This is the same 
probe sequence for k2. 

Let’s walk through the quadratic probing sequence a little 
more carefully to make it clear. Recall that 

hQ(k,c) = (k mod size + c2) mod size 

using quadratic probing. The following table gives the probe 
sequence for k1 = 13 and k2 = 26 using quadratic probing: 
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Figure 7.13 

The probe sequence is identical given the same initial hash. 
To solve this problem, double hashing was introduced. The idea 
is simple. A second hash function is introduced, and the probe 
sequence is generated by multiplying the number of collisions by 
a second hash function. How should we choose this second hash 
function? Well, it turns out that choosing a second prime number 
smaller than size works well in practice. 

Let’s create two hash functions h1(k) and h2(k). Now let p1 be 
a prime number that is equal to size. Let p2 be a prime number such 
that p2 < p1. We can now define our functions and the final double 
hash function: 

h1(k) = k mod p1 

h2(k) = k mod p2. 

The final function to generate the probe sequence is here: 
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h(k, c) = (h1(k) + c*h2(k)) mod size. 

Let’s let p1 = 13 = size and p2 = 11 for our example. How would this 
change the probe sequence for our keys 13 and 26? In this case h1(13) 
= h1(26) = 0, but h2(13) = 2, h2(26) = 4. 

Consider the following table: 

Figure 7.14 

Now that we understand double hashing, let’s start to 
explore one implementation in code. We will create two hash 
functions as follows: 

The second hash function will use a variable called prime, 
which has a value that is a prime number smaller than size. 
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Finally, our hash function with a collisions parameter is 
developed below: 

As before, these can be easily added to our HashTable data 
structure without changing much of the code. We would simply 
add the hashOne and hashTwo functions and replace the two-
parameter hash function. 

Complexity of Open Addressing Methods 

Open addressing strategies for implementing hash tables that use 
probing all have some features in common. Generally speaking, they 
all require O(n) space to store the data entries. In the worst case, 
search-time cost could be as bad as O(n), where the data structure 
checks every entry for the correct key. This is not the full story 
though. 

As we discussed before with linear probing, when a table 
is mostly empty, adding data or searching will be fast. First, check 
the position in O(1) with the hash. Next, if the key is not found and 
the table is mostly empty, we will check a small constant number 
of probes. Search and insert would be O(1), but only if it’s mostly 
empty. The next question that comes to mind is “What does ‘mostly 
empty’ mean?” Well, we used a special value to quantify the 
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“fullness” level of the table. We called this the load factor, which we 
represented with L. 

Let’s explore L and how it is used to reason about the 
average runtime complexity of open addressing hash tables. To 
better understand this idea, we will use an ideal model of open 
addressing with probing methods. This is known as uniform 
hashing, which was discussed a bit before. Remember the problems 
of linear probing and quadratic probing. If any value gives the same 
initial hash, they end up with the same probe sequence. This leads 
to clustering and degrading performance. Double hashing is a close 
approximation to uniform hashing. Let’s consider double hashing 
with two distinct keys, k1 and k2. We saw that when h1(k1) = h1(k2), 
we can still get a different probe sequence if h2(k1) ≠ h2(k2). An 
ideal scenario would be that every unique key generates a unique 
but uniform random sequence of probe indexes. This is known as 
uniform hashing. Under this model, thinking about the average 
number of probes in a search is a little easier. Let’s think this 
through. 

Remember that the load on the table is the ratio of filled 
to the total number of available positions in the table. If n elements 
have been inserted into the table, the load is L = n / size. Let’s 
consider the case of an unsuccessful search. How many probes 
would we expect to make given that the load is L? We will make 
at least one check, but next, the probability that we would probe 
again would be L. Why? Well, if we found one of the (size − n) 
open positions, the search would have ended without probing. So 
the probability of one unsuccessful probe is L. What about the 
probability of two unsuccessful probes? The search would have 
failed in the first probe with probability L, and then it would fail 
again in trying to find one of the (n − 1) occupied positions among 
the (size − 1) remaining available positions. This leads to a probability 
of 
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Things would progress from there. For 3 probes, we get the 
following: 

On and on it goes. We extrapolate out to x probes: 

This sequence would be smaller than assuming a probability of L 
for every missed probe. We could express this relationship with the 
following equation: 
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This gives us the probability of having multiple failed 
probes. We now want to think about the expected number of 
probes. One failed probe has the probability of L, and having more 
failed probes is less likely. To calculate the expected number of 
probes, we need to add the probabilities of all numbers of probes. 
So the P(1 probe) + P(2 probes)…on to infinity. You can think of this 
as a weighted average of all possible numbers of probes. A more 
likely number of probes contributes more to the weighted average. 
It turns out that we can calculate a value for this infinite series. 
The sum will converge to a specific value. We arrive at the following 
formula using the geometric series rule to give a bound for the 
number of probes in an unsuccessful search: 

This equation bounds the expected number of probes or 
comparisons in an unsuccessful search. If 1/(1−L) is constant, then 
searches have an average case runtime complexity of O(1). We saw 
this in our analysis of linear probing where the performance was 
even worse than for the ideal uniform hashing. 

For one final piece of analysis, look at the plot of 1/(1−L) 
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between 0 and 1. This demonstrates just how critical the load factor 
can be in determining the expected complexity of hashing. This 
shows that as the load gets very high, the cost rapidly increases. 

Figure 7.15 

For completeness, we will present the much better 
performance of a successful search under uniform hashing: 
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Successful searches scale much better than unsuccessful ones, but 
they will still approach O(n) as the load gets high. 

Chaining 

An alternative strategy to open addressing is known as chaining 
or separate chaining. This strategy uses separate linked lists to 
handle collisions. The nodes in the linked list are said to be “chained” 
together like links on a chain. Our records are then organized by 
keeping them on “separate chains.” This is the metaphor that gives 
the data structure its name. Rather than worrying about probing 
sequences, chaining will just keep a list of all records that collided at 
a hash index. 

This approach is interesting because it represents an 
extremely powerful concept in data structures and algorithms, 
composition. Composition allows data structures to be combined 
in multiple powerful ways. How does it work? Well, data structures 
hold data, right? What if that “data” was another data structure? The 
specific composition used by separate chaining is an array of linked 
lists. To better understand this concept, we will visualize it and 
work through an example. The following image shows a chaining-
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based hash table after 3 add operations. No collisions have occurred 
yet: 

Figure 7.16 

The beauty of separate chaining is that both adding and 
removing records in the table are made extremely easy. The 
complexity of the add and remove operations is delegated to the 
linked list. Let’s assume the linked list supports add and remove 
by key operations on the list. The following functions give example 
implementations of add and remove for separate chaining. We will 
use the same Student class and the simple hash function that 
returns the key mod size. 

The add function is below. Keep in mind that table[index] 
here is a linked list object: 

Here is the remove function that, again, relies on the linked 
list implementation of remove: 
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When a Student record needs to be added to the table, 
whether a collision occurs or not, the Student is simply added to the 
linked list. See the diagram below: 

Figure 7.17 

When considering the implementation, collisions are not 
explicitly considered. The hash index is calculated, and student A is 
inserted by asking the link list to insert it. Let’s follow a few more 
add operations. 

Suppose a student, B, is added with a hash index of 2. 
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Figure 7.18 

Now if C is added with a hash index of 3, it would be placed 
in the empty list at position 3 in the array. 
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Figure 7.19 

Here, the general idea of separate chaining is clear. Maybe 
it is also clear just how this could go wrong. In the case of search 
operations, finding the student with a given key would require 
searching for every student in the corresponding linked list. As you 
know from chapter 4, this is called Linear Search, and it requires 
O(n) operations, where n is the number of items in the list. For the 
separate chaining hash table, the length of any of those individual 
lists is hoped to be a small fraction of the total number of elements, 
n. If collisions are very common, then the size of an individual 
linked list in the data structure would get long and approach n 
in length. If this can be avoided and every list stays short, then 
searches on average take a constant number of operations leading 
to add, remove, and search operations that require O(1) operations 
on average. In the next section, we will expand on our 
implementation of a separate chaining hash table. 

Separate Chaining Implementation 

For our implementation of a separate chaining hash table, we will 
take an object-oriented approach. Let us assume that our data are 
the Student class defined before. Next, we will define a few classes 
that will help us create our hash table. 

We will begin by defining our linked list. You may want 
to review chapter 4 before proceeding to better understand linked 
lists. We will first define our Node class and add a function to return 
the key associated with the student held at the node. The node class 
holds the connections in our list and acts as a container for the 
data we want to hold, the student data. In some languages, the next 
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variable needs to be explicitly declared as a reference or pointer to 
the next Node. 

We will now define the data associated with our LinkedList 
class. The functions are a little more complex and will be covered 
next. 

Our list will just keep track of references to the head and 
tail Nodes in the list. To start thinking about using this list, let’s 
cover the add function for our LinkedList. We will add new students 
to the end of our list in constant time using the tail reference. We 
need to handle two cases for add. First, adding to an empty list 
means we need to set our head and tail variables correctly. All other 
cases will simply append to the tail and update the tail reference. 

Searching in the list will use Linear Search. Using the 
currentNode reference, we check every node for the key we are 
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looking for. This will give us either the correct node or a null 
reference (reaching the end of the list without finding it). 

You may notice that we return currentNode regardless of 
whether the key matches or not. What we really want is either a 
Student object or nothing. We sidestepped this problem with open 
addressing by returning −1 when the search failed or the index of 
the student record when it was found. This means upstream code 
needs to check for the −1 before doing something with the result. 
In a similar way here, we send the problem upstream. Users of the 
code will need to check if the returned node reference is null. There 
are more elegant ways to solve this problem, but they are outside of 
the scope of the textbook. Visit the Wikipedia article on the Option 
Type for some background. For now, we will ask the user of the class 
to check the returned Node for the Student data. 

To finish our LinkedList implementation for chaining, we 
will define our remove function. As remove makes modifications to 
our list structure, we will take special care to consider the different 
cases that change the head and tail members of the list. We will also 
use the convention of returning the removed node. This will allow 
the user of the code to optionally free its memory. 
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Now we will define our hash table with separate chaining. 
In the next code piece, we will define the data of our HashTable 
implemented with separate chaining. The HashTable’s main piece 
of data is the composed array of LinkedLists. Also, the simple hash 
function is defined (key mod size). 

Here the simplicity of the implementation shines. The 
essential operations of the HashTable are delegated to LinkedList, 
and we get a robust data structure without a ton of programming 
effort! The functions for the add, search, and remove operations are 
presented below for our chaining-based HashTable: 
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One version of remove is provided below: 

Some implementations of remove may expect a node 
reference to be given. If this is the case, remove could be 
implemented in constant time assuming the list is doubly linked. 
This would allow the node to be removed by immediately accessing 
the next and previous nodes. We have taken the approach of using a 
singly linked list and essentially duplicating the search functionality 
inside the LinkedList’s remove function. 

Not bad for less than 30 lines of code! Of course, there is 
more code in each of the components. This highlights the benefit 
of composition. Composing data structures opens a new world of 
interesting and useful data structure combinations. 

Separate Chaining Complexity 

Like with open addressing methods, the worst-case performance of 
search (and our remove function) is O(n). Probing would eventually 
consider nearly all records in our HashTable. This makes the O(n) 
complexity clear. Thinking about the worst-case performance for 
chaining may be a little different. What would happen if all our 
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records were hashed to the same list? Suppose we inserted n 
Students into our table and that they all shared the same hash index. 
This means all Students would be inserted into the same LinkedList. 
Now the complexity of these operations would all require examining 
nearly all student records. The complexity of these operations in the 
HashTable would match the complexity of the LinkedList, O(n). 

Now we will consider the average or expected runtime 
complexity. With the assumption that our keys are hashed into 
indexes following a simple uniform distribution, the hash function 
should, on average, “evenly” distribute the records along all the lists 
in our array. Here “evenly” means approximately evenly and not 
deviating too far from an even split. 

Let’s put this in more concrete terms. We will assume that 
the array for our table has size positions, and we are trying to insert 
n elements into the table. We will use the same load factor L to 
represent the load of our table, L = n / size. One difference from our 
open addressing methods is that now our L variable could be greater 
than 1. Using linked lists means that we can store more records in 
all of the lists than we have positions in our array of lists. When n 
Student records have been added to our chaining-based HashTable, 
they should be approximately evenly distributed between all the 
size lists in our array. This means that the n records are evenly 
split between size positions. On average, each list contains 
approximately L = n / size nodes. Searching those lists would 
require O(L) operations. The expected runtime cost for an 
unsuccessful search using chaining is often represented as O(1 + L). 
Several textbooks report the complexity this way to highlight the 
fact that when L is small (less than 1) the cost of computing the 
initial hash dominates the 1 part of the O(1 + L). If L is large, then it 
could dominate the complexity analysis. For example, using an array 
of size 1 would lead to L = n / 1 = n. So we get O(1 + L) = O(1 + n) = 
O(n). In practice, the value of L can be kept low at a small constant. 
This makes the average runtime of search O(1 + L) = O(1 + c) for 
some small constant c. This gives us our average runtime of O(1) for 
search, just as we wanted! 
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For the add operation, using the tail reference to insert 
records into the individual lists gives O(1) time cost. This means 
adding is efficient. Some textbooks report the complexity of remove 
or delete to be O(1) using a doubly linked list. If the Node’s reference 
is passed to the remove function using this implementation, this 
would give us an O(1) remove operation. This assumes one thing 
though. You need to get the Node from somewhere. Where might 
we get this Node? Well, chances are that we get it from a search 
operation. This would mean that to effectively remove a student 
by its key requires O(1 + L) + O(1) operations. This matches the 
performance of our implementation that we provided in the code 
above. 

The space complexity for separate chaining should be easy 
to understand. For the number of records we need to store, we will 
need that much space. We would also need some extra memory 
for references or pointer variables stored in the nodes of the 
LinkedLists. These “linking” variables increase overall memory 
consumption. Depending on the implementation, each node may 
need 1 or 2 link pointers. This memory would only increase the 
memory cost by a constant factor. The space required to store the 
elements of a separate chaining HashTable is O(n). 

Design Trade-Offs for Hash Tables 

So what’s the catch? Hash tables are an amazing data structure 
that has attracted interest from computer scientists for decades. 
These hashing-based methods have given a lot of benefits to the 
field of computer science, from variable lookups in interpreters and 
compilers to fast implementations of sets, to name a few uses. With 
hash tables, we have smashed the already great search performance 
of Binary Search at O(log n) down to the excellent average case 
performance of O(1). Does it sound too good to be true? Well, as 
always, the answer is “It depends.” Learning to consider the 
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performance trade-offs of different data structures and algorithms 
is an essential skill for professional programmers. Let’s consider 
what we are giving up in getting these performance gains. 

The great performance scaling behavior of search is only in 
the average case. In practice, this represents most of the operations 
of the hash tables, but the possibility for extremely poor 
performance exists. While searching on average takes O(1), the 
worst-case time complexity is O(n) for all the methods we 
discussed. With open addressing methods, we try to avoid O(n) 
performance by being careful about our load factor L. This means 
that if L gets too large, we need to remove all our records and re-add 
them into a new larger array. This leads to another problem, wasted 
space. To keep our L at a nice value of, say, 0.75, that means that 25% 
of our array space goes unused. This may not be a big problem, but 
that depends on your application and system constraints. On your 
laptop, a few missing megabytes may go unnoticed. On a satellite 
or embedded device, lost memory may mean that your costs go 
through the roof. Chaining-based hash tables do not suffer from 
wasted memory, but as their load factor gets large, average search 
performance can suffer also. Again, a common practice is to remove 
and re-add the table records to a larger array once the load crosses 
a threshold. It should be noted again though that separate chaining 
already requires a substantial amount of extra memory to support 
linking references. In some ways, these memory concerns with hash 
tables are an example of the speed-memory trade-off, a classic 
concept in computer science. You will often find that in many cases 
you can trade time for space and space for time. In the case of hash 
tables, we sacrifice a little extra space to speed up our searches. 

Another trade-off we are making may not be obvious. Hash 
tables guarantee only that searches will be efficient. If the order of 
the keys is important, we must look to another data structure. This 
means that finding the record with key 15 tells us nothing about the 
location of records with key 14 or 16. Let’s look at an example to 
better understand this trade-off in which querying a range might be 
a problem for hash tables compared to a Binary Search. 
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Suppose we gave every student a numerical identifier when 
they enrolled in school. The first student got the number 1, the 
second student got the number 2, and so on. We could get every 
student that enrolled in a specific time period by selecting a range. 
Suppose we used chaining to store our 2,000 students using the 
identifier as the key. Our 2,000 students would be stored in an array 
of lists, and the array’s size is 600. This means that on average each 
list contains between 3 and 4 nodes (3.3333…). Now we need to 
select 20 students that were enrolled at the same time. We need 
all the records for students whose keys are between 126 to 145 
(inclusive). For a hash table, we would first search for key 126, add 
it to the list, then 127, then 128, and so on. Each search takes about 
three operations, so we get approximately 3.3333 * 20 = 66.6666 
operations. What would this look like for a Binary Search? In Binary 
Search, the array of records is already sorted. This means that once 
we find the record with key 126, the record with key 127 is right 
next to it. The cost here would be log2(2000) + 20. This supposes 
that we use one Binary Search and 20 operations to add the records 
to our return list. This gives us approximately log2(2000) + 20 = 
10.9657 + 20 = 30.9657. That is better than double our hash table 
implementation. However, we also see that individual searches 
using the hash table are over 3 times as fast as the Binary Search 
(10.6657 / 3.333 = 3.2897). 

 

Exercises 

1. On a sheet of paper, draw the steps of executing 
the following set of operations on a hash table 
implemented with open addressing and probing. Draw the 
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table, and make modifications after each operation to 
better understand clustering. Keep a second table for the 
status code. 

a. Using linear probing with a table of size 13, 
make the following changes: add key 12; add key 13; 
add key 26; add key 6; add key 14, remove 26, add 
39. 

b. Using quadratic probing with a table of size 
13, make the following changes: add key 12; add key 
13; add key 26; add key 6; add key 14, remove 26, add 
39. 

c. Using double hashing with a table of size 13, 
make the following changes: add key 12; add key 13; 
add key 26; add key 6; add key 14, remove 26, add 
39. 

2
. Implement a hash table using linear probing as 

described in the chapter using your language of choice, 
but substitute the Student class for an integer type. Also, 
implement a utility function to print a representation of 
your table and the status associated with each open slot. 
Once your implementation is complete, execute the 
sequence of operations described in exercise 1, and print 
the table. Do your results match the paper results from 
exercise 1? 

3
. Extend your linear probing hash table to have a 

load variable. Every time a record is added or removed, 
recalculate the load based on the size and the number of 
records. Add a procedure to create a new array that has 
size*2 as its new size, and add all the records to the new 
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table. Recalculate the load variable when this procedure is 
called. Have your table call this rehash procedure anytime 
the load is greater than 0.75. 

4
. Think about your design for linear probing. Modify 

your design such that a quadratic probing HashTable or a 
double hashing HashTable could be created by simply 
inheriting from the linear probing table and overriding 
one or two functions. 

5
. Implement a separate chaining-based HashTable 

that stores integers as the key and the data. Compare the 
performance of the chaining-based hash table with linear 
probing. Generate 100 random keys in the range of 1 to 
20,000, and add them to a linear probing-based 
HashTable with a size of 200. Add the same keys to a 
chaining-based HashTable with a size of 50. Once the 
tables are populated, time the execution of conducting 
200 searches for randomly generated keys in the range. 
Which gave the better performance? Conduct this test 
several times. Do you see the same results? What factors 
contributed to these results? 
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8.  Search Trees 

Learning Objectives 

After reading this chapter you will… 

• extend your understanding of linked data 
structures. 

• learn the basics techniques that drive performance 
in modern databases. 

Introduction 

We begin by listing some desirable aspects of data structures: 

• economical and dynamic memory consumption 
• ability to insert or delete keys in sublinear time 
• ability to look up keys by exact match to a key in sublinear time 
• ability to retrieve several key values based on a range 

With these criteria in mind, let us review some of the data 
structures studied so far. Arrays allow us constant-time lookup, 
assuming we know the index of the item we want to retrieve. 
Finding that index requires a linear traversal of an unsorted array 
or a logarithmic Binary Search of a sorted array. Arrays have an 
unfortunate side effect in that they must be preallocated in memory. 
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As a result, inserts and deletes require either excess allocation or 
reallocation (with a great deal of copying). 

We then considered linked lists. Conveniently, we are not 
required to know the capacity before performing the initial insert. 
Linked lists are less economic in memory consumption, as each 
stored datum requires us to also store a next (and possibly previous) 
reference. Locating a particular position for insert or delete 
requires a Linear Search, but the insertions or deletions at that 
point are constant time. 

Then we arrived at hash tables. Finally, we had a data 
structure that allowed for true constant-time lookups based on 
a key. Inserts and deletes were also constant-time operations, 
assuming a sufficient hash function. These improvements were 
substantial but left us no option for retrieval of values based on a 
range. 

What we want is some general-purpose data structure that 
maximizes the desired utility of linked lists while minimizing the 
rigidity of arrays and hash tables. Binary search trees fit nicely into 
this niche. Reusing some concepts we have learned so far, we can 
achieve sublinear times for inserts, deletions, and retrievals. We can 
grow and shrink our size as needed. We will require more storage 
than arrays but will not require the excess capacity as with hash 
tables. 

Brief Introduction to Trees 

Binary search trees are a subclass of binary trees, which are a 
subclass of trees, which are a subclass of graphs. Here we will only 
introduce enough details to facilitate an understanding of binary 
search trees. In chapter 11, we will provide more precise 
mathematical definitions of graphs and trees. 

Trees (as well as graphs in general) consist of nodes and 
edges. As a note, nodes are also referred to as vertices (or vertex 

Search Trees  |  219



in the singular form). We will use nodes as containers for data, 
such as an integer, string, or even a database record. Nodes are 
related to other nodes via edges. Each edge connects two nodes and 
describes the relationship between those nodes. Edges in binary 
trees are child/parent relationships. One node is the parent, and 
the other is a child. Each node has at most one parent. A tree will 
have exactly one node without a parent. This node is called the root. 
Each node has no more than two children. A node with zero children 
is called a leaf. From time to time, we may consider a subtree, which 
is any given node and all its descendants. Although this chapter 
will focus mainly on binary trees, you should note the term “m-ary 
tree,” where m is any positive integer and represents the maximum 
number of children for any given node. 

Now we consider some additional tree-related terms. It is 
important to note that these terms are not consistently defined 
across different textbooks. In order to be consistent with another 
source you may likely read (Wikipedia), I will defer to the definitions 
found there. Whenever reading a new text, ensure that you first 
review that source’s definition of terms: 

• height—the number of nodes from a leaf node to the root, 
starting at 1 

• depth—the number of nodes from the root to a particular 
node, starting at 1 

• level—all descendants of the root that have the same depth 
• full—a given m-ary tree is full if each node has exactly 0 or m 

children 
• complete—a given m-ary tree is complete if every level is filled 

except possibly the last (which is filled from left to right) 
• perfect—a given m-ary tree is perfect if it is full and all leaf 

nodes are at the same depth 

Below is an example of a tree. Interior nodes are gray, and 
leaf nodes are white. The root node has been marked with an “R.” 
Note that this is a ternary tree because any given node has at most 
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three children. It is not full, which implies that it is neither complete 
nor perfect. 

Figure 8.1 

We may now make some useful assertions regarding binary 
trees: 

• Because a perfect binary search tree implies that every interior 
node has two children, the number of nodes (n) is 2k − 1, where 
k is the number of levels in the tree. In a related manner, the 
number of levels in a tree is the floor of log2 n. 

• Of all nodes in a perfect binary search tree, roughly half are 
leaf nodes, and the other half are interior. Precisely, the 
number of leaf nodes will be the ceiling of n/2, and the 
number of interior nodes will be the floor of n/2. 

So far this concept of a tree does not produce much 
benefit. We could assign a key to each node, but what exactly would 
that mean? What does the relationship between parent and child 
imply? To derive value from trees, binary trees are insufficient, and 
we must apply more constraints. 
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A binary search tree (BST) is a specific type of binary tree 
that ensures that 

• each node (N) is assigned a key. 
• each node has a left child (L), which represents the subtree 

rooted at node L. The key of every node in this subtree is less 
than the key stored in node N. It is possible that a given node 
has no left child. 

• each node has a right child (R), which represents the subtree 
rooted at R. The key of every node in this subtree is greater 
than the key in node N. It is possible that a given node has no 
right child. 

Figure 8.2 is an example of a BST. The key stored in each 
node is an integer but could be of any data type that can be sorted. 
For convenience, we are assuming that BSTs do not contain 
duplicate keys, although we do not exactly need to. The tree below 
is perfect, but a BST does not need to be. As we discuss BSTs further, 
we will start to consider more problematic configurations. 

Figure 8.2 

To understand the structure of a BST better, we can 
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consider an in-order traversal of the tree. This traversal is one in 
which we recursively visit the left child, current node, and right 
child. If you were to print each key during an in-order traversal, the 
result would be all keys from the tree in ascending order. 

As implied in the figure above, nodes are modeled using 
the following class. In most practical applications, the Key property 
would hold some data other than type integer. Regardless, the 
simplicity of this model will be useful for the remainder of the 
chapter. 

Searching 

Searching is a simple operation. You begin at the root node 
considering a key (x) you want to find. If the key stored at the node 
is x, you have found it. If x is less than the node’s key, you search the 
left subtree. If x is greater than the node’s key, you search the right 
subtree. You continue this process until you arrive at a leaf node 
and have no more children to consider. Below is the pseudocode to 
further clarify the algorithm. The function is originally called with 
the root node, which then changes to descendants in the recursive 
calls. 

Next, we should consider the runtime of searching a BST. 
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Just as with searching arrays and linked lists, we want to consider 
the amount of work necessary as the size of the data structure 
increases. In our recursive example above, we perform between 1 
and 5 comparisons on each call to search (depending on exactly 
how you count). As a result, we have no more than 5 comparisons 
for each node visited. Because 5 is not dependent on the overall 
number of nodes, the amount of work to perform for each node 
visited is constant with respect to n. 

How many nodes must we visit in the worst-case scenario? 
If we compare the desired value to the key at the root node and 
do not find the value, we have immediately eliminated roughly half 
of the values in our tree. Once at the second level, we perform the 
comparison again and eliminate half of this subtree, which was in 
turn half of the original. As a result, we reduce the number of keys 
we have to consider by half each time we visit a child. At worst, we 
will have to visit only one node in each level of the tree, resulting 
in ceiling log2 n nodes visited. With O(log n) nodes visited and O(1) 
amount of work at each node, search can be run in O(log n) time for 
a perfect BST. 

Insertion 

To this point, we have assumed that a BST exists. We have yet to 
create one. Insertion simply searches for a valid position where the 
key would be if it existed and adds it at that position. In other words, 
the search for a nonexistent key always terminates in a leaf node. 
A naïve insertion algorithm considers this leaf node. If the key to 
insert is less than the leaf’s key, you insert a new node as the left 
child. If the new key is greater than the leaf’s key, you insert it as the 
right child. Pseudocode is included below to clarify: 

224  |  Search Trees



Deletion 

When possible, it is good practice to enumerate the possible states 
that an algorithm may have to consider. When deleting a key from 
a BST, the node containing that key may be in four different states 
with respect to its children: no children, left child only, right child 
only, and both left and right children. 

No Children 

First, we must locate the node containing the key to be deleted. If 
that node has no children, it is by definition a leaf node. To delete 
a key at the leaf node, it suffices to simply remove the parent’s 
reference to the leaf node. In the example below, the node 
containing the value 4 has no children. We can simply go to that 
node’s parent and set the left child reference to null. 
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Figure 8.3 

Left Child Only / Right Child Only 

If a node contains a key to be deleted and has only one child, 
we can shift the appropriate subtree up. We can do this because 
all descendants in a node’s left subtree are less than that node’s 
value. In the case below, all left-side descendants of 8 are nodes 
containing values less than 8. If 4 only has one child, we can simply 
promote that child by setting 8’s left child to that node. Similar 
reasoning would apply if 4 only had a right child. 
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Figure 8.4 

Both Left and Right Children 

If a node containing a value to be deleted has both left and right 
children, we now must consider the possibility that those children 
may also be parents. This notably complicates the decision of what 
should be node 8’s left child. If we were to shift the subtree starting 
at 1 up to 8’s left child, that new node would have two right children 
(2 and 6), which obviously does not work. You would encounter a 
similar issue trying to promote 6 to be 8’s left child. What we need 
instead is to find 4’s in-order predecessor or in-order successor, 
remove that value from the tree (it is a leaf), and place it where 4 
was. In the example below, we promoted 4’s in-order predecessor, 
but we could have just as easily promoted the value 5. 

Figure 8.5 
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Unbalanced BSTs 

When assessing the performance of search in BSTs, we had silently 
assumed that trees are perfect (or at least complete). We relied on 
this convenient property that the height of the tree was related to 
the logarithm of the number of nodes. In practice, this is rarely the 
case. Imagine we built a perfect BST using keys 1 through 7. 

Figure 8.6 

In figure 8.6, we can visualize the relationship between the 
number of nodes and the height of the tree. This relationship is 
logarithmic, so we can count on searching, inserting, and deleting 
keys to run in logarithmic time. However, if we perform inserts as 
specified above (in order from 1 to 7), we will actually end up with 
the tree in figure 8.7. Take a moment to trace the algorithm with 
pencil and paper to convince yourself this is the case. 
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Figure 8.7 

Our resulting structure, although technically a BST, also 
closely resembles a sorted linked list. When we studied linked lists, 
we were only able to search in linear time because all n nodes must 
be visited to ensure we found the desired key. The lesson learned 
is this: if we are not careful about how we perform inserts, we 
may likely construct a tree structure that cannot support O(log n) 
searches. 

Ideally, we would love a tree to be perfect after each insert. 
This is not mathematically possible. If you have a perfect tree with 
seven nodes and three levels, inserting an eighth node will create a 
new level and result in a state where not all leaf nodes have the same 
depth. It may be desirable to maintain a complete tree. However, 
recall that complete trees must fill the lowest level from left to right. 
This constraint is not necessary, as we will be just as happy to fill it 
out right to left or in completely arbitrary order. As we can see, we 
need a new term to describe BSTs that allow for O(log n) searches 
and avoid the linked list type of configuration. 
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In a manner of speaking, we want our tree to be balanced 
after each insert. At this time, we will loosely define balance to 
be the condition such that the subtree heights of left and right 
subtrees are roughly equal. That leads to our next question: Can we 
modify our insert such that (1) the tree can remain balanced after 
each insert and (2) inserts can still be performed in O(log n) time? 

Self-Balancing Trees 

Self-balancing trees are those that maintain a balanced structure 
after each insertion and deletion and thus maintain an O(log n) 
search time. A thorough survey of these data structures could 
constitute chapters of text. This section will introduce how AVL 
trees maintain a balanced structure during insertion. We focus only 
on the insertion, but deletion must be addressed as well. Search, 
however, does not change from the naïve BST. Additional resources 
at the end of the chapter provide more information about this and 
other self-balancing trees. 

AVL Trees 

AVL trees are named after the computer scientists who developed 
them (G. M. Adelson-Velsky and E. M. Landis). After insertions that 
leave the tree in an unbalanced state, we achieve balance by 
performing small constant-timed adjustments called rotations. 

First, we must determine whether an insertion has resulted 
in an unbalanced tree. To determine this, we use a metric called 
the balance factor. This integer is the difference in the heights of 
a node’s left and right subtrees. Below is the simplest possible tree 
where we can witness such an imbalance. As usual, values are stored 
inside the node. Subtree heights are stored at the upper right of 
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each node. If a left or right child does not exist, then the subtree 
height is 0. In this example, the node containing 8 has a left child 
with subtree height of 2 and a right child with subtree height of 
0. The absolute difference between 2 and 0 is 2. This is above our 
threshold of 1, so our tree is unbalanced. 

Figure 8.8 

We now have a means for detecting unbalanced trees and 
are left to determine how to bring the tree back into balance. This 
is where we employ rotations. Rotations are small, constant-time 
adjustments to a subtree that improve the balance of that subtree. 
They are called rotations because they have the visual effect of 
rotating that subtree to a more balanced state. In figure 8.8, a 
rotation makes the 5 node the new root with a left child of 4 and 
a right child of 8. This is visually depicted in figure 8.9. Notice that 
after the rotation, the height of the subtree starting at 8 is now 1. 
Node 5 has left and right subtrees both at height 1. The difference is 
0, which is not greater than 1, indicating that we are now in balance. 
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Figure 8.9 

We make one last consideration regarding AVL trees. 
Earlier we had described this modification to BSTs as “self-
balancing” and the heights of left and right subtrees as roughly 
equal. What actually happens is more nuanced and worthy of 
discussion. With perfect BSTs, we concluded that the relationship 
between the number of nodes in the tree and the number of 
comparisons required for a search was logarithmic. For AVL trees, 
we must be able to show the same relationship applies. 

A proof by induction is able to show that the height of any 
AVL tree is O(log n). Note the distinction here. Perfect binary trees 
were shown to have a height equal to the ceiling of log2 n (or more 
precisely, log2(n+1)). AVL trees are said to have a height of O(log 
n), which is less precise. Rather than reviewing the inductive proof 
(which can easily be found online and in many reference textbooks), 
let us consider the following two trees: 
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Figure 8.10 

The tree on the left is a perfect BST. It has 7 nodes, which 
implies a height of log2(7+1) = 3. The tree on the right is a balanced 
AVL tree. Note that the height is no longer 3, even though we claim 
that the tree is balanced and that search times are still O(log n). We 
point this out to illustrate that while some algorithms may share the 
same Big-O classification, their actual runtimes may differ. Because 
of the rotations, we ensure that the difference in heights of the left 
and right subtrees is no more than 1. This then ensures that our AVL 
tree, while not complete or perfect, has a height no greater than 1 + 
log2(n+1). The additional 1 does not significantly impact the growth 
of the function as n becomes very large, so we can conclude that 
searching an AVL tree can still be accomplished in O(log n) time. 

 

Exercises 
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1. Drawing your own diagrams, perform insertions 
into an empty binary search tree. Can you determine the 
appropriate insertion sequence to produce 

a. a perfect BST of size 7? 
b. a BST where each node has only left children 

or no children? 
c. a BST where each node has only right 

children or no children? 

2
. In the language of your choice, implement BST 

deletes. Rather than solving the entire problem at once, 
break your code into three distinct cases: 

a. Node to delete has no children. 
b. Node to delete has one child. 
c. Node to delete has two children. 
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9.  Priority Queues 

Learning Objectives 

After reading this chapter you will… 

• understand the concept of a priority queue. 
• understand the features of heaps, one of the most 

common priority queue implementations. 
• be able to implement Heap Sort, a sorting 

algorithm that uses a priority queue. 
• be able to explain the common operations on 

priority queues and their complexity. 
• be able to implement a binomial heap that supports 

a fast union operation. 

Introduction 

We have already discussed the concept of a queue. This is a data 
structure that accepts items and removes them in the order they 
were inserted. This is often referred to as first-in-first-out, or FIFO. 
A priority queue serves like a regular queue allowing items to be 
inserted, but it allows for the item with the highest priority to 
exit the queue first. We could implement a priority queue as a 
simple array with a current capacity that just resorts all the items 
by priority every time an item is inserted. This would mean that the 
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insert operation for our simple priority queue would be O(n log n). 
There may be more clever approaches to preserve the sorted order 
by moving things over. This might lead to an O(n) insert operation. 
Extract could work similarly by removing the first element and then 
copying all the elements over. Could we do better than O(n) though? 
Linear time might be a long time to wait for a large n. For example, 
suppose many players are waiting to start an online game. We could 
use a priority queue to add players to the next game based on 
how long they have been waiting. A game AI may want to prioritize 
and target players that are the most dangerous first. We will see in 
chapter 11 that priority queues are used as the foundation for some 
important graph algorithms. Since this type of data structure could 
be very useful, researchers and engineers have discovered a variety 
of data structures that greatly improve the time-cost complexity. 
We will explore two interesting implementations of priority queues 
in this chapter. 

Heaps 

A heap is a data structure that guarantees that the minimum (or 
maximum) value is easily extracted. The most common heap is a 
binary heap, which is a sort of binary tree. In a binary heap, the 
“left” or “right” position of a child node no longer carries any specific 
meaning. Rather, in a max-binary-heap, or just max-heap, the 
parent is guaranteed to be greater than both children. Min-binary-
heaps naturally reverse that relationship, with the parent 
guaranteed to be less than the children. We call this quality the heap 
property. It will allow us to isolate our reasoning to only subheaps 
and thus aid our understanding of heap-related algorithms. 

For the remainder of this section, we assume max-binary-
heaps to avoid confusion. We will also assume unique values in 
our binary heap. This simplifies the relationships between parents 
and their children. If a particular application of binary heaps 
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necessitates duplicate keys, this is easily remedied by adjusting the 
appropriate comparisons. The figure below gives an example of a 
heap: 

Figure 9.1 

This distinction between parent and child nodes leads to 
two convenient properties of binary heaps: 

• For a given heap, the maximum value (or key) is easily 
accessible at the root of the tree. As we will soon see, this 
implies not that it is easily extracted from the structure but 
simply that finding it is trivial. 

• For any given node in a binary heap, all descendants contain 
values less than that node’s value. In other words, any given 
subtree of a max-binary-heap is also a valid max-binary-heap. 

Let us emphasize and further address a common point of 
confusion. Although binary heaps are binary tree structures, their 
similarities with binary search trees (BST) end there. Recall from 
chapter 8 that an in-order traversal of a binary search tree will 
produce a sorted result. This is true because, for any given node 
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in a BST, all left descendants are less than that node, and all right 
descendants are greater than it. In binary heaps, the left descendant 
is less than the parent, and the right descendant is less than it as 
well, but there is no other defined relationship between the two 
descendants. 

To understand insertion and extraction, first note the 
shape of the binary tree above. A tree is a complete binary tree if 
each node has two children and all levels are filled except possibly 
the last, which is filled from left to right (chapter 8). Using some 
clever tricks, we can store a complete binary tree as an array. 
Because each level of the tree is filled and the last is filled left 
to right, we can simply list all elements in level 0, followed by all 
elements in level 1, and so on. Once these values are stored in an 
array, some simple arithmetic on the indexes allows traversal from 
a node to its parents or its children. We will be regularly adding 
and removing data from the heap itself. As we have seen in prior 
chapters, arrays are an insufficient data structure for accomplishing 
this. For the sake of simplicity, we will assume excess capacity at 
the end of the array. In practice, we would probably use some 
sort of abstract list that is able to grow or shrink and provides 
constant-time lookups. This might be something like an array that 
automatically reallocates when its capacity is reached. 
Implementations of these lists exist in most modern languages. For 
the present discussion, we can just treat the underlying storage as a 
typical array. The image below shows a heap represented as an array 
with integer values for the priorities: 
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Figure 9.2 

For now, we will work only with integers that serve as 
the priorities themselves. To extend this into a more useful data 
structure, we would need only to change the contents of the array 
to an object or object reference. This would allow us to hold a more 
useful structure such as a student record or a game player’s data. 
Then the only other change needed would be to do comparisons on 
array[index].priority instead of just array[index]. This modification 
is like the one we discussed regarding Linear Search in chapter 
4. Recognize that we can generalize this representation easily to 
accommodate data records that are slightly more sophisticated than 
just integers. 

Operations on Binary Heaps 

Before we discuss the general operations on binary heaps, let’s 
discuss some helper functions that will help us with our array 
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representation. We will define functions that will allow us to find 
the parent, left child, and right child indexes given the index for 
any node in the tree structure. These would be helpful to define for 
any tree structure that we wanted to implement using an array. For 
this representation, the root will always be at the index 0. These are 
given in the figure above, but we will provide them as code here: 

Here the floor function is the same as the mathematical 
function floor. It rounds down to the next integer. 

Heapify and Sift Up 

Using the above functions to access positions in our tree, we can 
develop two important helper functions that will allow us to modify 
the tree and work to maintain our heap properties. These are the 
functions heapify and siftUp. When we are building our heap or 
modifying the priority of an item, these functions will be useful. 
The heapify function will exchange a parent with the larger of its 
children and then recursively heapify the subheap. The siftUp 
function will exchange a child with its parent to maintain the heap 
property by moving larger elements up the heap until it either is 
smaller than its parent or becomes the root node element. The 
siftUp function will be used when we want to increase the priority 

Priority Queues  |  241



of an element. Let’s look at the pseudocode for these functions in 
the context of an array-based max-heap implementation. 

The heapify function below lets a potentially small value 
work its way down the max-heap to find its correct place in the 
heap ordering of the tree. This code uses a size parameter that gives 
the current number of elements in the heap. This code also makes 
use of an exchange function like the one discussed in chapter 3 on 
sorting. This simply switches the elements of an array using indexes. 

Now we will present the siftUp function. This function 
works in the reverse direction from heapify. It allows for a node with 
a potentially large value to make its way up the heap to the correct 
position to preserve the heap property. Since siftUp moves items 
toward index 0, the size is not needed. This does assume that the 
given index is valid. 

With these two helper functions, we can now implement 
the methods to insert elements and remove the max-element from 
our priority queue. Before we move on though, let’s think about the 
complexity of these operations. Each of these methods moves items 
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up or down the depths of a binary tree. If the tree could remain 
balanced, then a traversal from the top to bottom or bottom to top 
should only require O(log n) operations, assuming that the tree is 
balanced. 

Insertion 

Consider inserting the number 8 into the prior binary heap example. 
Imagine if we simply added that 8 in the array after the 2 (in position 
6). 

Figure 9.3 

What can we now claim about the state of our binary heap? 
Subheaps starting at indexes 1, 3, 4, and 5 are all still valid subheaps 
because the heap property is preserved. In other words, our 
erroneous insertion of 8 under 4 does not alter the descendants 
of these 4 nodes. As a result, we could hypothetically leave these 
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subheaps unaltered in our corrected heap. This leaves nodes at 
indexes 0 and 2. These are the two nodes that have had their 
descendants altered. The heap property between node indexes 2 
and 6 no longer holds, so let us start there. If we were to switch 
the 4 and 8, we would restore the heap property between those two 
indexes. We also know that moving 8 into index 2 will not affect the 
heap property between indexes 2 and 5. If 2 was less than 4 and 4 
was found to be less than 8, switching the 4 and 8 does not impact 
the heap property between indexes 2 and 5. Once the 4 and 8 are 
in the correct positions, we know that the subheap starting at index 
2 is correct. From here, we simply perform the same operations 
on subsequent parents until the next parent’s value is greater than 
the value we are trying to insert. Given that we are inserting 8 and 
our root node’s value is 12, we can stop iterating at this point. The 
pseudocode below is descriptive but much simpler than practical 
implementations, which must consider precise data structures for 
storing the heap. This provides the general pattern for inserting 
into a binary heap regardless of the underlying implementation. We 
place the new element at the end of the heap and then essentially 
siftUp that element to the place that will preserve the heap 
property. 

Runtime of insertion is independent of whether the heap is 
stored as object references or an array. In either case, we have to 
compare n.value to n.parent.value at most O(log n) times. Note that, 
unlike the caveat included in binary search trees (where traversing 
an unbalanced tree may be as slow as O(n)), binary heaps maintain 
their balance by building each new depth level before increasing its 
depth. This ensures that an imbalanced binary heap does not occur. 
This fact guarantees that our insert operation is O(log n). 
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A specific implementation for insert with our array-based 
heap is provided below: 

Extraction 

Extraction is the process of removing the root node of a binary 
heap. It works much the same way as insertion but in reverse. The 
general strategy is as follows. 

To extract an element from the heap… 

1. Extract the root element, and prepare to return it. 
2. Replace the root with the last element in the heap. 
3. Call heapify on the new root to correct any violations of the 

heap property. 

As an example, consider our corrected heap from before. If 
we overwrite our 12 (at index 0) with the last value from the array (4 
at index 6), the result will be as follows in figure 9.5. Just as we saw 
with insertion, many of our subheaps still have the heap property 
preserved. In fact, the only two places where the heap property 
no longer holds are from indexes 0 to 1 and 0 to 2. If the value at 
the root is less than the maximum value of its two children, then 
we swap the root value and that maximum. We will continue this 
process of pushing the root value down until the current node is 
greater than both children, thus conforming to the heap property. 
In this case, we swap the 4 with the 8. The root node conforms to 
the heap property because its children are 7 and 4. The node with 
value 4 (now at index 2) only has one child (2 at index 5). It conforms 
to the heap property, and our extraction is complete. 
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Figure 9.4 

Figure 9.5 
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As before, the pseudocode is much simpler than the actual 
implementation. 

The array-based implementation could use the heapify 
function to give the following code: 

While accessing the max-element would only require O(1) 
time, updating the heap after it is removed requires a call to heapify. 
This function requires O(log n). While not constant time, O(log n) 
is a great improvement over our initial naïve implementation ideas 
from the introduction. Our initial idea of sorting and then always 
copying moving elements up or down would have required O(n) 
operations to maintain our priority queue when inserting and 
removing elements. The max-heap greatly improves on these 
complexity estimates, giving O(log n) for both insert and extract. 
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Heap Sort 

Heap Sort presents an interesting use of a priority queue. It can be 
used to sort the elements of an array. Once insertion and extraction 
have been defined, Heap Sort becomes a trivial step. We first build 
the heap, then repeatedly extract the maximum element and put it 
at the end of the array. Much like Selection Sort, Heap Sort will find 
the extreme value, place it into the correct position, then find the 
extreme of the remaining values. The trick is in how we perceive the 
heap. If we model it using an array, we can then sort the values in 
place by extracting the maximum. The extraction makes the heap 
smaller by one, but arrays are fixed size and still have the extra 
space allocated at the end. This portion at the end of the array 
becomes our sorted portion. As we perform more extractions and 
move those extracted values to the end of the array, our sorted 
portion gets bigger. See the figure below for an example. Unlike 
Selection Sort, where finding that extreme value requires an O(n) 
findMax or findMin, heaps allow us to extract the extreme value and 
revise our heap in O(log n) time. We perform this operation O(n) 
times, resulting in an O(n log n) sorting algorithm. The following 
figure gives an example execution of the sorting algorithm: 
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Figure 9.6 

Before we give the implementation of Heap Sort, we should 
also mention how to build the heap in the first place. If we are 
given an array of random values, there is no guarantee that these 
will conform to our requirements of a heap. This is accomplished by 
calling the heapify function repeatedly to build valid heaps starting 
at the deeper levels of the balanced tree up to the root. Below is 
the code for buildHeap, which will take an array of elements to be 
sorted and put them into the correct heap ordering: 
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It might be unintuitive, but buildHeap is O(n) in its time 
complexity. At first glance, we see heapify, an O(log n) operation, 
getting called inside a loop that runs from size/2 down to 0. This 
might seem like O(n log n). What we need to remember though is 
that O(log n) is a worst-case scenario for heapify. It may be more 
efficient. As we build the heap up, we start at position size/2. This 
is because half of the heap’s elements will be leaves of the binary 
tree located at the deepest level. As we heapify the level just before 
the leaves, we only need to consider three elements: the parent 
and its two leaf children. As heapify runs, the amount of work is 
proportional to the height of the subtree it is operating on. Only on 
the very last call does heapify potentially visit all log n of the levels of 
the tree. We will omit the calculation details, but it has been proven 
that O(n) gives a tighter bound on the worst-case time complexity 
of buildHeap. 

Now we are ready to implement Heap Sort. An 
implementation is provided below. Our O(n log n) complexity comes 
from calling heapify from the root every time we extract the next 
largest value. Another useful feature of this algorithm is that it is 
an in-place sorting algorithm. This means the extra space (auxiliary 
space) only consumes O(1) space in memory. So Heap Sort compares 
favorably to Quick Sort with a better worst-case complexity (O(n 
log n) vs. O(n2)), and it offers an improvement over Merge Sort in 
terms of its auxiliary space usage (O(1) auxiliary space vs. O(n)). We 
should note that Heap Sort may perform poorly in practice due to 
cache misses, since traversing a tree skips around the elements of 
the array. 

This section has provided an overview of heapSort and the 
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concept of a heap more generally. Heaps are great data structures 
for implementing priority queues. They can be implemented using 
arrays or linked data structures. The array implementation also 
demonstrates an interesting example of embedding a tree structure 
into a linear array. The power and simplicity of heaps make them 
a popular data structure. One potential disadvantage of the heap is 
that merging two heaps might require O(n) operation. To combine 
these two heaps, we would need to create a new array, recopy the 
elements, and then call buildHeap, taking O(n) operations. In the 
next section, we will discuss a new data structure that supports an 
O(log n) union operation. 

Binomial Heaps 

The binomial heap supports a fast union operation. When two 
heaps are given, union can combine them into a new heap 
containing all the combined elements from the two heaps. Binomial 
heaps are linked data structures, but they are a bit more complex 
than linked lists or binary trees. There is an interesting 
characteristic to their structure, which models the pattern of binary 
numbers, and combining them parallels binary addition. Binary 
numbers and powers of 2 seem to pop up everywhere in computer 
science. In this section, we will present the binomial heap and 
demonstrate how it can provide a fast union operation. Then we will 
see how many of the other operations on heaps can be implemented 
with clever use of the union function. 

Linked Structures of Binomial Heaps 

To build our heap, we need to discuss two main structures. The 
first part is the binomial tree. Each binomial tree is composed of 
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connected binomial nodes. The structure of a binomial tree can 
be described recursively. Each binomial tree has a value k that 
represents its degree. The degree 0 tree, B0, has one element and 
no children. A degree k tree, Bk, has k direct children but 2k nodes 
in total. When the Bk tree is constructed, the roots of two Bk−1 trees 
are examined. The largest root of the two trees is assigned as the 
root of the new tree, assuming a max-binomial-heap. The heap is 
then represented as a list of binomial trees. A collection of trees is 
known as a forest. The main idea of the binomial is that each heap 
is a list of trees, and to combine the two heaps, one just needs to 
combine all the trees of equal degree. To facilitate this, the trees are 
always ordered by increasing tree degrees. A few illustrations will 
help you understand this process a little better. 

Figure 9.7 

Using these trees, a heap would then be a list of these trees. 
To preserve the max-heap property, any node’s priority must be 
larger than its child. Below is an example binomial heap. Let’s call 
this heapA: 
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Figure 9.8 

Notice that the maximum element is in B1 tree of this heap. 
This illustrates that the actual max-heap element is one of the root 
nodes of trees in the list. Now we can make the connection to binary 
numbers. This heap will either have a tree of any given degree or 
not. This could be indicated by a 0 or 1. So the above heap has a 
degree 0 tree, a degree 1 tree, and a degree 3 tree. In binary with 
the bits correctly ordered, this would be 10112 or the number 1110 

in base 10. Suppose there is another heap, heapB, that we wish to 
merge with. This is given below: 
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Figure 9.9 

This heap has trees for degrees 1 and 2. In binary, we could 
represent this pattern as 1102 or the number 610 in base 10. We 
will soon look at how these heaps could be merged, but first let’s 
consider the process of binary addition for these two binary 
numbers: 11 and 6. The figure below gives an example of the 
addition: 

Figure 9.10 

This diagram of binary addition also demonstrates how our 
trees need to be combined to create the correct structure for our 
unified trees. The following images will show these steps in action. 
First, we will merge the two lists into another list (but not a heap 
yet). This merge is similar to the merge operation in Merge Sort: 
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Figure 9.11 

Next, the algorithm will examine two trees at a time to 
determine if the trees are the same degree. Any trees that have 
an equal degree will be merged. Because the nodes are ordered 
by degree, we only need to consider two nodes at a time and 
potentially keep track of a carry node. 
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Figure 9.12 

These nodes are not equal in degree. We can move on. 

Figure 9.13 

Now we are considering two nodes of equal degree. These 
two B1 trees need to become a B2 tree. 
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Figure 9.14 

After combining the B1 trees, we now have two B2 trees that 
need to be combined. This will be done such that the maximum item 
of the roots becomes the new root. 

Figure 9.15 

Again, the “carry” from addition means that we now have 
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two B3 trees to merge. This step creates a B4 tree with 24 = 16 nodes. 
The final merged heap is below, with one B0 node and one B4 node: 

Figure 9.16 

Implementing Binomial Trees 

To implement Binomial trees, we will need to create a node class 
with appropriate links. Again, we will use references, also known 
as pointers, for our links. A node—and by extension, a tree—can be 
represented with the BinomialTree class below. In this class, Data 
would be any entity that needed storing in the priority queue: 
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For the BinomialHeap itself, we only need a reference to the 
first tree in the forest. This simple pseudocode is presented below: 

As we progress toward a complete implementation, we will 
build up the operation that we need, working toward the union 
operation. Once union is implemented, adding or removing items 
from the heap can be implemented through the clever usage of 
union. For now, let’s implement the combine and merge functions. 

Combining Two Binomial Trees 

The combine function is given below. This simple function combines 
two Bk−1 trees to create a new Bk tree. This function will make 
the first tree a child of the second tree. We will assume that 
tree1.priority is always less than or equal to tree2.priority. 

The figure below shows how two B2 trees would be 
combined to form a B3 tree. This figure also identifies the parent, 
sibling, and child links for each node. Links that do not connect 
to any other node have the value null. This figure can help you 
understand the combine function. We need to maintain these links 
in a specific way to make the other operations function correctly. 
Notice that the children of the root are all linked together by sibling 
links, like a linked list’s next reference. 
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Figure 9.17 

Another interesting feature of binomial trees is that each 
tree of degree k contains subtrees of all the degrees below it. These 
are the children linked from the first child of the new tree. For 
example, the B3 tree contains a B0, B1, and B2 subtree in descending 
order. You can observe these in the figure above. This fact will come 
in handy when we implement the extract function for binomial 
heaps. 

Merging Heaps 

Now that we can combine two trees to form a higher-degree tree, 
we should implement the mergeHeaps function. This will take both 
heaps and their forests of binomial trees and merge them. You can 
think of these “forests” as linked lists of binomial trees. Once these 
forests are merged, trees of equal degree will be adjacent in the 
list. This sets the stage for our “binary addition” algorithm that 
will calculate the union of both heaps. The code for mergeHeaps is 
below: 
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This may look a little difficult to follow, but the concept 
is simple. Starting with links to the lists of binomial trees, we first 
check to see if any of these are null. If so, we just return the other 
one. Afterward, we check which of the nonnull trees has the lowest 
degree and set our newHeap’s head to this tree. The while-loop then 
appends the tree with the next smallest degree to the growing list. 
The loop continues until one of the two lists of trees reaches its end. 
After that, the remaining trees are linked to the list by the current 
reference, and the head of our merged list is returned. Notice that 
the sibling references serve the same role as the next pointers of a 
linked list. 
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The Binomial Heap Union Operation 

Now we will tackle the union function. This function performs the 
final step of combining two binomial heaps by traversing the 
merged list and combining any pairs of trees that have equal 
degrees. The algorithm is given below: 

The union function begins by setting up a new, empty heap 
and then merging the two input heaps. Once the merged list of trees 
is generated, the algorithm traverses the list using three references 
(previousTree, currentTree, and nextTree). The code will advance 
the traversal forward if currentTree and nextTree have different 
degree values. Another case that moves the traversal forward is 
when nextTree.sibling has the same degree as currentTree and 
nextTree. This is because nextTree and nextTree.sibling will need to 
combine to occupy the k + 1 degree level. When a call to combine 
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is needed, the algorithm checks which tree has the highest priority, 
and that tree’s root becomes the root of the k + 1 tree. 

Time Complexity of Union 

The union operation is completed, but now we should analyze its 
complexity. One of the main reasons for choosing a binomial heap 
was its fast union operation. How fast is it though? We will be 
interested in the time complexity of union. The algorithm traverses 
both heaps for the merge and the sequence combinations. This 
means that the complexity is proportional to the number of trees. 
We need to determine how many binomial trees are needed to 
represent all n elements of the priority queue. Recall that there are 
many parallels between binomial heaps and binary numbers. If we 
have 3 items in our heap, we need a tree of degree 0 with 1 item and 
a tree of degree 1, with 2 items. To store 5 items, we would need a 
degree 0 tree with 1 item, and a degree 2 tree with 4 items. Here we 
see that the binary representation of n indicates which trees of any 
given degree are needed to store those elements. A number can be 
represented in binary using a maximum number of bits proportional 
to the log of that number. So there are log n trees in a binomial heap 
with n elements. This means that the time complexity of union is 
bounded by O(log n). By similar reasoning, the time cost for finding 
the element with the highest priority is O(log n), the number of 
binomial trees in the heap. 

Inserting into a Binomial Heap 

With union completed, we can see the benefit of this operation. 
Below is an implementation of insert using union. The union 
operation takes O(log n) time, and all other operations can be 
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performed in O(1) time. This makes the time complexity for insert 
O(log n). 

Extracting the Max-Priority Element 

The priority queue would not be complete without a function to 
extract the maximum element from the heap. The extract function 
takes a bit more work, but ultimately extract executes in O(log 
n) time. The maximum priority element must be the root of one 
of the heap’s trees. This function will find the maximum priority 
element and remove its entire tree from the heap’s tree list. Next, 
the children of the max-element are inserted into another heap. 
With the two valid heaps, we can now call union to create the 
binomial heap that results from removing the highest priority 
element. This element can be returned, and the binomial heap will 
have been updated to reflect its new state. We note that in this 
implementation, there is a side effect of extract. This function 
returns the maximum priority element and removes it from the 
input heap as a side effect that modifies the input. Another 
approach would be to implement an accessMax function to find 
the maximum priority element and return it without updating the 
heap. This means that extracting the element would require a call 
to accessMax to save the element, and then extract would be called. 
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We could also consider extracting part of the BinomialHeap class 
and avoid passing any heap as input. 

Increase-Priority and Delete Operations 

We will continue our theme of building new operations by 
combining old ones. Here we will present the delete operation. This 
operation will make use of extract and increasePriority, which we 
will develop next. Creating the increasePriority function will rely 
on the parent points that we have been maintaining. When the 
priority of an element is increased, it may need to work its way 
up the tree structure toward the root. The following code gives an 
implementation of increasePriority. We assume for simplicity that 
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we already have a link to the element whose priority we want to 
increase. The element with the highest priority moves up the tree 
just like in the binary heap’s siftUp operation. 

Now we can implement delete very easily using the MAX 
special value. We increase the element’s priority to the maximum 
possible value and then call extract. An implementation of delete is 
provided below. Again, we assume that a link to the element we wish 
to delete is provided. 

The time complexity of delete is derived from the 
complexity of increasePriority and extract. Each of these requires 
O(log n) time. 

A Note on the Name 

Before we close this chapter on priority queues, we should discuss 
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why these are called binomial heaps. The name “binomial heap” 
comes from a property that for a binomial tree of degree k, the 
number of nodes at a given depth d is k choose d. This is written as  

Summary 

In this chapter, we explored one of the most important abstract data 
types: the priority queue. This data structure provides a collection 
that supports efficient insert and remove operations with the added 
benefit of removing elements in order of priority. We looked at 
two important implementations. One implementation used an array 
and created a binary heap. We also saw that this structure can 
be used to implement an in-place O(n log n) sorting algorithm by 
simply extracting elements from the queue and placing them in the 
sorted zone of the array. Next, we explored the binomial heap’s 
implementation. This data structure provides an O(log n) union 
operation. Though the implementation of binomial heaps seems 
complex, there is an interesting and beautiful simplicity to its 
structure. Our union algorithm also draws parallels to the addition 
of binary numbers, making it an interesting data structure to study. 
Any student of computer science should understand the concept 
of priority queues. They form the foundation of some interesting 
algorithms. For example, chapter 11 on graphs will present an 
algorithm for a minimum spanning tree that relies on an efficient 
priority queue. The minimum spanning tree is the backbone of 
countless interesting and useful algorithms. Hopefully, by now, you 
are beginning to see how data structures and algorithms build on 
each other through composition. 
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Exercises 

1. Implement Heap Sort on arrays in the language of 
your choice. Revisit your work from chapter 3 on sorting. 
Using your testing framework, compare Heap Sort, Merge 
Sort, and Quick Sort. Which seems to perform better on 
average in terms of speed? Why would this be the case on 
your machine? 

2
. What advantages would Heap Sort have over Quick 

Sort? What advantages would Heap Sort have over Merge 
Sort? 

3
. Extend your heap implementation to use 

references to data records with a priority variable rather 
than just an integer as the priority. 

4
. Implement both binomial heaps using linked 

structures and binary heaps using an array 
implementation. Using a random number generator, 
create two equal-sized heaps, and try to merge them. Try 
the merge with binomial heaps, and get some statistics 
for the merge speed. Compare with the merge speed of 
binary heaps with integers. Repeat this process several 
times to explore how larger n affects the speed of the rival 
heap merge algorithms. The results may not be what you 
expect. How might caches play a role in the speed of 
these algorithms? 
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10.  Dynamic Programming 

Learning Objectives 

After reading this chapter you will… 

• understand the relationship between recursion and 
dynamic programming. 

• understand the benefits of dynamic programming 
for optimization. 

• understand the criteria for applying dynamic 
programming. 

• be able to implement two classic dynamic 
programming algorithms. 

Introduction 

Dynamic programming is a technique for helping improve the 
runtime of certain optimization problems. It works by breaking a 
problem into several subproblems and using a record-keeping 
system to avoid redundant work. This approach is called “dynamic 
programming” for historical reasons. Richard Bellman developed the 
method in the 1940s and needed a catchy name to describe the 
mathematical work he was doing to optimize decision processes. 
The name stuck and, perhaps, leads to some confusion. This is 
because many terms in computer science have several meanings 
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depending on the context, especially the terms “dynamic” and 
“programming.” In any case, the technique of dynamic programming 
remains a powerful tool for optimization. Let’s look deeper into this 
concept by exploring its link to problems that can be expressed 
recursively. 

Recursion and Dynamic Programming 

Recursive algorithms solve problems by breaking them into smaller 
subproblems and then combining them. Solving the subproblems 
is done by applying the same recursive algorithm to the smaller 
subproblems by breaking the subproblems into sub-subproblems. 
This continues until the base case is reached. Below is a recursive 
algorithm from chapter 2 for calculating the Fibonacci numbers: 

To solve the problem for fibonacci(n), we need to solve 
it for fibonacci(n − 1) and fibonacci(n − 2). We see that there are 
subproblems with the same structure as the original problem. 

The Fibonacci numbers algorithm is not an optimization 
problem, but it can give us some insight to help understand how 
dynamic programming can help us. Let’s look at a specific instance 
of this problem. The recursive formula for Fibonacci numbers is 
given below: 
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F0 = 0 

F1 = 1 

Fn = Fn−1 + Fn−2. 

Now let’s explore calculating the eighth Fibonacci number: 

F8=F8−1 + F8−2 

=F7 + F6 

=(F7−1 + F7−2) + (F6−1 + F6−2) 

=(F6 + F5) + (F5 + F4) 

=((F6−1 + F6−2) + (F5−1 + F5−2)) + ((F5−1 + F5−2) + (F4−1 + 
F4−2)) 

=((F5 + F4) + (F4 + F3)) + ((F4 + F3) + (F3 + F2)) 

…and so on. 

There are two key thoughts we can learn from this expansion for 
calculating F8. The first thought is that things are getting out of 
hand and fast! Every term expands into two terms. This leads to 
eight rounds of doubling. Our complexity looks like O(2n), which 
should be scary. Already at n = 20, 220 is in the millions, and it only 
gets worse from there. The second thought that comes to mind in 
observing this explanation is that many of these terms are repeated. 
Let’s look at the last line again. 
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Figure 10.1 

Already, we see that F4 and F3 are used three times each, 
and they would also be used in the expansion of F5 and F4. If we 
could calculate each of these just once and reuse the value, a lot 
of computation could be saved. This is the big idea of dynamic 
programming. 

In dynamic programming, a record-keeping system is 
employed to avoid recalculating subproblems that have already 
been solved. This means that for dynamic programming to be 
helpful, subproblems must share sub-subproblems. In these cases, 
the subproblems are not independent of one another. There are 
some repeated identical structures shared by multiple subproblems. 
Not all recursive algorithms satisfy this property. For example, 
sorting one-half of an array with Merge Sort does not help you 
sort the other half. With Merge Sort, each part is independent of 
the other. In the case of Fibonacci, F7 and F6 both share a need to 
calculate F1 through F5. Storing these values for reuse will greatly 
improve our calculation time. 
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Requirements for Applying Dynamic 
Programming 

There are two main requirements for applying dynamic 
programming. First, a problem must exhibit the property known as 
optimal substructure. This means that an optimal solution to the 
problem is constructed from optimal solutions to the subproblems. 
We will see an example of this soon. The second property is called 
overlapping subproblems. This means that subproblems are shared. 
We saw this in our Fibonacci example. 

Optimal Matrix Chain Multiplication 

A classic application of dynamic programming concerns the optimal 
multiplication order for matrices. Consider the sequence of 
matrices {M1, M2, M3, M4}. There are several ways to multiply these 
together. These ways correspond to the number of distinct ways 
to parenthesize the matrix multiplication order. For the 
mathematically curious, the Catalan numbers give the total number 
of possible ways. For example, one way to group these would be (M1 

M2) (M3 M4). Another way could be M1 ((M2 M3) M4). Any grouping 
leads to the same final result, but the number of multiply operations 
of the overall calculation could differ greatly with different 
groupings. To understand this idea, let’s review matrix 
multiplication. 

Matrix Multiplication Review 

Matrix multiplication is an operation that multiplies and adds the 
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rows of one matrix with the columns of another matrix. Below is an 
example: 

Figure 10.2 

Here we have the matrix A and the matrix B. A is a 2-by-3 
matrix (2 rows and 3 columns), and B is a 3-by-2 matrix (3 rows 
and 2 columns). The multiplication of AB is compatible, which means 
the number of columns of A is equal to the number of rows in the 
second matrix, B. When two compatible matrices are multiplied, 
their result has a structure where the number of rows equals the 
number of rows in the first matrix and the number of columns 
equals the number of columns in the second matrix. The process is 
the same for compatible matrices of any size. 

Implementing Matrix Multiplication 

Now let’s consider an algorithm for matrix multiplication. To 
simplify things, let’s assume we have a Matrix class or data structure 
that has a two-dimensional (2D) array. Another way to think of 
a 2D array is as an array of arrays. We could also think of this 
as a table with rows and columns. The structure below gives a 
general example of a Matrix class. Within this class, we also have 
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two convenience functions to access and set the values of the 
matrix based on the row and column of the 2D array. 

With this structure for a Matrix class, we can implement 
a matrix multiplication procedure. Below we show the process of 
performing matrix multiplication on two compatible matrices: 

This function implements the matrix multiplication 
procedure described above. On line 12, the new value of the (i, j) 
entry in the result matrix is calculated. We see that this involves 
a multiply operation and an addition operation. On a typical 
processor, the multiply operation is slower than addition. As we 
think about the complexity of matrix multiplication, we will mainly 
consider the number of multiplications. This is because as the 
matrices get large, the cost associated with multiplication will 
dominate the cost of addition. For this reason, we only consider the 
number of multiplications. 

So how many multiplications are needed for matrix 
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multiplication? The pattern above has a triple-nested loop. This 
gives us a clue to the number of times the inner code will run. As 
a result, we can expect the number of multiplications to be equal 
to the number of times the inner code will run. Let’s assume that 
matrix A has ra rows and ca columns, and that matrix B, in a similar 
way, has rb rows and cb columns. For A and B to be compatible 
matrices, the value of ca would have to be equal to rb. We know that 
the inner loop with index k runs a total of ca times. This entire loop 
is executed once for every cb of B’s columns (cb * ca). Finally, these 
two inner loops for j and k would all run for every row in A, leading 
to multiplications proportional to ra * ca * cb. This illustrates that as 
the size of the matrices gets larger, the number of multiplications 
grows quickly. 

Why Order Matters 

Now that we have seen how to multiply matrices together and 
understand the computational cost, let’s consider just why choosing 
to multiply in a specific order is important. Suppose that we need to 
multiply three matrices—A, B, and C—shown in the image below: 

Figure 10.3 

Multiplying them together could proceed with the 
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grouping (AB)C, where A and B are multiplied together first, and 
then that result is multiplied by C. Alternatively, we could group 
them as A(BC) and first multiply B by C, followed by A multiplied by 
the result. Which would be better, or would it even matter? 

Let’s figure this out by first considering the A(BC) grouping. 
The figure below illustrates this example. With this grouping, 
calculating the BC multiplication yields 20,000 multiply operations. 
Multiplying A by this result gives another 10,000 for a total of 30,000 
multiply operations. 

Figure 10.4 

Next, let’s consider the (AB)C grouping. The following figure 
shows a rough diagram of this calculation. The AB matrix 
multiplication gives a cost of 1,000 multiply operations. Then this 
result multiplied by C gives another 5,000. We now have a total of 
6,000 multiply operations for the (AB)C grouping over the other. 
This represents a fivefold decrease in cost! 
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Figure 10.5 

This example illustrates that the order of multiplication 
definitely matters in terms of computational cost. Additionally, as 
the matrices get larger, there could be significant cost savings when 
we find an optimal grouping for the multiplication sequence. 

A Recursive Algorithm for Optimal 
Matrix-Chain Multiplication 

We are interested in an algorithm for finding the optimal ordering of 
matrix multiplication. This corresponds to finding a grouping with 
a minimal cost. Suppose we have a chain of 5 matrices, M0 to M4. 
We could write their dimensions as a list of 6 values. The 6 values 
come from the fact that each sequential pair of matrices must be 
compatible for multiplication to be possible. The figure below shows 
this chain and gives the dimensions as a list. 
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Figure 10.6 

An algorithm that minimizes the cost must find an optimal 
split for the final two matrices. Let’s call these final two matrices A 
and B. For the result to be optimal, then A and B must both have 
resulted from an optimal subgrouping. The possible splits would be 

(M0) (M1 M2 M3 M4) = AB with a split after position 0 

(M0 M1) (M2 M3 M4) = AB with a split after position 1 

(M0 M1 M2) (M3 M4) = AB with a split after position 2 

(M0 M1 M2 M3) (M4) = AB with a split after position 3. 

We need to evaluate these options by assessing the cost 
of creating the A and B matrices (optimal subproblems) as well as 
the cost of the final multiply, with matrix A being multiplied by B. 
A recursive algorithm would find the minimal cost by checking the 
minimum cost among all splits. In the process of finding the cost 
of all these four options for splits, we would need to calculate the 
optimal splits for other sequences to find their optimal groupings. 
This demonstrates the feature of optimal substructure, the idea 
that an optimal solution could be built from optimal subproblems. 
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For the first grouping, we have A = M0 and B = (M1 M2 M3 

M4). To calculate the cost of this split, it is assumed that A and 
B have been constructed optimally. This means that a recursive 
algorithm considering this split must then make a recursive call to 
find the minimal grouping for (M1 M2 M3 M4) for the B matrix. This in 
turn would trigger another search for the optimal split among (M1) 
(M2 M3 M4) (M1 M2) (M3 M4) and (M1 M2 M3) (M4). We can also see 
that this would trigger further calls to optimize each sequence of 3 
matrices and so on. You may be able to imagine that this recursive 
process has a high branch factor leading to an exponential runtime 
complexity in the number of matrices. With n matrices, the runtime 
complexity would be even worse than O(2n), exponential time. It 
would follow an algorithm for calculating the Catalan numbers at 
O(3n). 

A general outline of the recursive algorithm would be as 
follows. We will consider an algorithm to calculate the minimal 
cost of multiplying a sequence of matrices starting at some matrix 
identified by the start index and including the ending matrix using 
an end index. The base case of the algorithm is when start and end 
are equal. The cost of multiplication of only one matrix is 0 as there 
is no operation to perform. The recursive case calculates the cost of 
splitting the sequence at some split position. There will be n − 1 split 
positions to test when considering n matrices where n = end − start 
+ 1, and the recursive algorithm will need to find the minimum of the 
options for the best split position. 

To complete the recursive algorithm, we will introduce a 
function to calculate the cost of the final multiplication. This could 
be a simple multiplication of the correct dimensions, but we will 
introduce and explain this function to make the meaning clear and 
to simplify some of the code (which would otherwise include a lot 
of awkward indexing). The figure below illustrates what is meant by 
the final multiplication: 
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Figure 10.7 

Suppose we are calculating the number of multiplications 
for a split at index 1 (or just after M1). The algorithm would have 
given the optimal cost for constructing the left matrix and the right 
matrix, but we would still need to calculate the cost of multiplying 
those together. The left matrix would have dimensions of d0 by d2 

and the right matrix would have dimensions of d2 by d5. Using the 
dimensions list and indexes for start, split, and end, we can calculate 
this cost. The function below performs this operation in a way that 
might make the meaning a little clearer. Notice that for matrix i, the 
dimensions of that matrix are di by di+1. 

With this helper function, we can now write the recursive 
algorithm. 
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This algorithm only calculates an optimal cost, but it could 
be modified to record the split indexes of the optimal splits so that 
another process could use that information. The optimal cost of 
multiplying all matrices in the optimal grouping could be calculated 
with a call to recursiveChainOpt(dimensions, 0, 4). This algorithm, 
while correct, suffers from exponential time complexity. This is the 
type of situation where dynamic programming can help. 

A Dynamic Programming Solution 

Let’s think back to our precious example for a moment. Think 
specifically about the first two groupings we wanted to consider. 
These are (M0) (M1 M2 M3 M4) and (M0 M1) (M2 M3 M4). For the 
first grouping, we need to optimize the grouping of (M1 M2 M3 M4) 
as a subproblem. This would involve also considering the optimal 
grouping of (M2 M3 M4). Optimally grouping (M2 M3 M4) is a problem 
that must be solved in the process of calculating the cost of (M0 

M1) (M2 M3 M4), which is the second subproblem in the original 
grouping. From this, we see that there are overlapping 
subproblems. Considering this problem meets the criteria of 
optimal substructure and overlapping subproblems, we can be 
confident that dynamic programming will give us an advantage. 

The logic behind the dynamic programming approach is 
to calculate the optimal groupings for subproblems first, working 
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our way through larger and larger subsequences and saving their 
optimal cost. Eventually, the algorithm minimizes the cost of the 
full sequence of matrix multiplies. In this calculation, the algorithm 
queries the optimal costs of the smaller sequences from a table. This 
algorithm uses two tables. The first table, modeled using a 2D array, 
stores the calculated optimal cost of multiplying matrices i through 
j. This table will be called costs. The second table holds the choice 
of split index associated with the optimal cost. This table will be 
called splits. While the algorithm calculates costs, the splits are the 
important data that can be used to perform the actual multiplication 
in the right order. 

The algorithm is given below. It begins by assigning the 
optimal values for a single matrix. A single matrix has no multiplies, 
so when calculating a matrix chain multiplication with a sequence of 
1, the cost is 0. Next, the algorithm sets a sequence length starting 
at 2. From here, start and end indexes are set and updated such 
that the optimal cost of all length 2 sequences in the chain are 
calculated and stored in the costs table. Next, the sequence length is 
increased to 3, and all optimal sequences of length 3 are calculated 
by trying the different options for the splitIndex. The splitIndex is 
updated in the splits table each time an improvement in cost is 
found. We should note that we again make use of the MAX value, 
which acts like infinity as we minimize the cost for a split. The 
process continues for larger and larger sequence lengths until it 
finds the cost of the longest sequence, the one including all the 
matrices. 
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Complexity of the Dynamic Programming 
Algorithm 

Now we have seen two algorithms for solving the optimal matrix 
chain multiplication problem. The recursive formulation proved to 
be exponential time (O(2n)) with each recursive call potentially 
branching n − 1 times. The dynamic programming algorithm should 
improve upon this cost; otherwise, it would not be very useful. 
One way to reason about the complexity is to think about how the 
tables get filled in. Ultimately, we are filling in about one-half of a 
2D array or table. This amounts to filling in the upper triangular 
portion of a matrix in mathematical terms. Our table is n by n, 
and we are filling in n(n+1)/2 values (a little over half of the n-by-
n matrix). So you may think the time complexity should be O(n2). 
This is not the full story though. For every start-end pair, we must 
try all the split indexes. This could be as bad as n − 1. So all these 
pairs need to evaluate up to n − 1 options for a split. We can reason 
that this requirement would lead to some multiple of n2*n or n3 

operations. This provides a good explanation of the time complexity, 
which is O(n3). This may seem expensive, but O(n3) is profoundly 
better than O(3n). Moreover, consider the difference between the 
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number matrices and the number multiplications needed for the 
chain multiplication. For our small example of 3 matrices (our n in 
this case), we saw the number of multiply operations drop by 24,000 
when using the optimal grouping, and our n was only 3. This could 
result in a significant improvement in the overall computation time, 
making the optimization well worth the cost. 

Longest Common Subsequence 

Another classic application of dynamic programming involves 
detecting a shared substructure between two strings. For example, 
the two strings “pride” and “ripe” share the substring “rie.” For these 
two strings, “rie” is the longest common subsequence or LCS. There 
are other subsequences, such as “pe,” but “rie” is the longest or 
optimal subsequence. These subsequence strings do not need to be 
connected. They can have nonmatched characters in between. It 
might seem like a fair question to ask, “Why is this useful?” Finding 
an LCS may seem like a simple game or a discrete mathematics 
problem without much significance, but it has been applied in the 
area of computational biology to perform alignments of genetic 
code and protein sequences. A slight modification of the LCS 
algorithm we will learn here was developed by Needleman and 
Wunsch in 1970. That algorithm inspired many similar algorithms 
for the dynamic alignment of biological sequences, and they are still 
empowering scientific discoveries today in genetics and biomedical 
research. Exciting breakthroughs can happen when an old 
algorithm is creatively applied in new areas. 
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Defining the LCS and Motivating Dynamic 
Programming 

A common subsequence is any shared subsequence of two strings. A 
subsequence of a string would be any ordered subset of the original 
sequence. An LCS just requires that this be the longest such 
subsequence belonging to both strings. We say “an” LCS and not 
“the” LCS because there could be multiple common subsequences 
with the same optimal length. 

Let’s add some terms to better understand the problem. 
Suppose we have two strings A and B with lengths m and n, 
respectively. We can think of A as a sequence of characters A = {a0, 
a1, …, am−1} and B as a sequence of the form B = {b0, b1, …, bn−1}. 
Suppose we already know that C is an LCS of A and B. Let’s let k be 
the length of C. We will let Ai or Bi mean the subsequence up to i, or 
Ai = {a0, a1, …, ai}. If we think of the last element in C, Ck−1 must be in 
A and B. For this to be the case, one of the following must be true: 

1. ck−1 = am−1 and ck−1 = bn−1. This means that am−1 = bn−1 and Ck−2 

is an LCS of Am−2 and Bn−2. 
2. am−1 is not equal to bn−1, and ck−1 is not equal to am−1. This must 

mean that C is an LCS of Am−2 and B. 
3. am−1 is not equal to bn−1, and ck−1 is not equal to bn−1. This must 

mean that C is an LCS of A and Bn−2. 

In other words, if the last element of C is also the last 
element of A and B, then it means that the subsequence Ck−2 is 
an LCS of Am−2 and Bn−2. This is hinting at the idea of optimal 
substructure, where the full LCS could be built from the Ck−2 

subproblem. The other two cases also imply subproblems where an 
LCS, C, is constructed from either the case of Am−2 (A minus its last 
element) and B or the case of A and Bn−2 (B minus its last element). 

Now let’s consider overlapping subproblems. We saw that 
our optimal solution for an LCS of A and B could be built from an 
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LCS of Am−2 and Bn−2 when the last elements of A and B are the 
same. Finding an LCS of Am−2 and Bn−2 would also be necessary 
for our other two cases. This means that in evaluating which of 
the three cases leads to the optimal LCS length, we would need to 
evaluate the LCS of Am−2 and Bn−2 subproblems and potentially many 
other shared problems with shorter subsequences. Now we have 
some motivation for applying dynamic programming with these two 
properties satisfied. 

A Recursive Algorithm for Longest Common 
Subsequence 

Before looking at the dynamic programming algorithm, let’s 
consider the recursive algorithm. Given two sequences as strings, 
we wish to optimize for the length of the longest common 
subsequence. The algorithm below provides a recursive solution 
to the calculation of the optimal length of the longest common 
subsequence. Like with our matrix chain example, we could add 
another list to hold each element of the LCS, but we leave that as an 
exercise for the reader. 

 
This algorithm will report the optimal length using a 

function call with the last valid indexes (length − 1) of each string 
provided as the initial index arguments. For example, letting A be 
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“pride” and B be “ripe,” our call would be recursiveLCS(A, B, 4, 3), 
with 4 and 3 being the last valid indexes in A and B. Trying to 
visualize the call sequence for this recursive algorithm, we could 
image a tree structure that splits into two branches each time the 
else block is executed on line 7. In the worst case, where there are 
no shared elements and the length of an LCS is 0, this means a new 
branch generates 2 more branches for every n elements (assuming 
n is larger than m). This leads to a time complexity of O(2n). 

A Dynamic Programming Solution 

In a similar way to the matrix chain algorithm, our dynamic 
programming solution for LCS makes use of a table to record the 
length of the LCS for a specific pair of string indexes. Additionally, 
we will use another “code” table to record from which optimal 
subproblem the current optimal solution was constructed. 

The following dynamic programming solution tries to find 
LCS lengths for all subsequences of the input strings A and B. First, 
a table, or 2D array, is constructed with dimensions (n+1) by (m+1). 
This adds an extra row and column to accommodate the LCS of 
a sequence and an empty sequence or nothing. A string and the 
empty string can have no elements in common, so the algorithm 
initializes the first row and column to zeros. Next, the algorithm 
proceeds by attempting to find the LCS length of all subsequences 
of string A and the first element of string B. For any index pair (i, 
j), the algorithm calculates the LCS length for the two subsequence 
strings Aj and Bi. 

The core of the algorithm checks the three cases discussed 
above. These are the case of a match among elements of A and B and 
two other cases where the problem could be reformulated as either 
shortening the A string by one or shortening the B string by one. As 
the algorithm decides which of these options is optimal, we record 
a value into our “code” table that tells us which of these options was 
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chosen. We will use the code “D,” “U,” and “L” for “Diagonal,” “from 
the Upper entry,” and “from the Left entry.” These codes will allow 
us to easily traverse the table by moving “diagonal,” “up,” or “left,” 
always taking an optimal path to output an LCS string. Let’s explore 
the algorithm’s code and then try to understand how it works by 
thinking about some intermediate states of execution. 

To better understand the algorithm, we will explore our 
previous example of determining the LCS of “pride” and “ripe.” Let 
us imagine that the algorithm has been running for a bit and we 
are now examining the point where indexB is 2 and indexA is 4. The 
figure below gives a diagram of the current states of the lengths and 
codes tables at this point in the execution: 
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Figure 10.8 

These tables can give us some intuition on how the 
algorithm works. Looking at the lengths table in row 2 and column 
2, we see there is a 1. This represents the LCS of the strings “pr” and 
“ri.” They share a single element “r.” Moving over to the cell found 
in row 2 and column 3, we see the number 2. This represents the 
length of the LCS of the strings “pri” and “ri.” Now the algorithm is 
considering the cell in the row 2 column 4 position. The strings in 
these positions do not match, so this is not built from the LCS along 
the diagonal. The largest LCS value from the previous subproblems 
is 2. This means that the LCS of “prid” and “ri” is the same as the 
LCS of the shortened A string “pri” and “ri.” Since this is the case, 
we would mark a 2 at this position in the lengths table and make an 
“L” in this position in the codes table. These algorithms take time to 
understand fully. Don’t get discouraged if it doesn’t click right away. 
Try to implement it in your favorite programming language, and 
work on some examples by hand. Eventually, it will become clear. 
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Extracting the LCS String 

Before we move on to the complexity analysis, let’s discuss how to 
read the LCS from the codes table. Depending on the design of your 
algorithm, you may be able to extract the LCS just from the strings 
and the lengths table, and the codes table could be omitted from the 
algorithm completely. We would like to keep things simple though, 
so we will just use the codes table. The algorithm below shows one 
method for printing the LCS string (in reverse order): 

Complexity of the Dynamic Programming 
Algorithm 

Now that we have seen the algorithm and an example, let’s consider 
the time complexity of the algorithm. The nested loops for the A 
and B indexes should be a clue. In the worst case, all increasing 
subsequences of each input string need to be compared. The 
algorithm fills every cell of the n-by-m table (ignoring the first row 
and column of zeros, which are initialized with a minor time cost). 
This gives us n * m cells, so the complexity of the algorithm would 
be considered O(mn). It might be reasonable to assume that m and 
n are roughly equal in size. This would lead to a time complexity of 
O(n2). This represents a huge cost savings over the O(2n) time cost 
of the recursive algorithm. 
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The space complexity is straightforward to calculate. We 
need two tables, each of size n+1 by m+1. So the space complexity 
would also be O(m*n), or, assuming m is roughly equal to n, O(n2). 

A Note on Memoization 

A related topic often appears in discussions of dynamic 
programming. The main advantage of dynamic programming comes 
from storing the result of costly calculations that may need to be 
queried later. The technique known as memoization does this in an 
elegant way. One approach to memoization allows for a function to 
keep a cache of tried arguments. Each time the function is called 
with a specific set of arguments, the cache can be queried to see if 
that result is known. If the specific combination of arguments has 
been used before, the result is simply returned from the cache. If 
the arguments have not been seen before, the calculation proceeds 
as normal. Once the result is calculated, the function updates the 
cache before returning the value. This will save work for the next 
time the function is called with the same arguments. The cache 
could be implemented as a table or hash table. 

The major advantage of memoization is that it enables the 
use of recursive style algorithms. We saw in chapter 2 that recursion 
represents a very simple and clear description of many algorithms. 
Looking back at the code in this chapter, much of it is neither 
simple nor clear. If we could have the best of both worlds, it would 
be a major advantage. Correctly implementing memoization means 
being very careful about variable scope and correctly updating the 
cache when necessary to make sure the optimal value is returned. 
You must also be reasonably sure that querying your cache will be 
efficient. 
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Summary 

Dynamic programming provides some very important benefits 
when used correctly. Any student of computer science should be 
familiar with dynamic programming at least on some level. The 
most important point is that it represents an amazing reduction in 
complexity from exponential O(2n) to polynomial time complexity 
O(nk) for some constant k. Few if any other techniques can boast of 
such a claim. Dynamic programming has provided amazing gains in 
performance for algorithms in operations research, computational 
biology, and cellular communications networks. 

These dynamic programming algorithms also highlight the 
complexity associated with implementing imperative solutions to a 
recursive problem. Often writing the recursive form of an algorithm 
is quite simple. Trying to code the same algorithm in an imperative 
or procedural way leads to a lot of complexity in terms of the 
implementation. Keeping track of all those indexes can be a big 
challenge for our human minds. 

Finally, dynamic programming illustrates an example of the 
speed-memory trade-off. With the recursive algorithms, we only 
need to reserve a little stack space to store some current index 
values. These typically take up only O(log n) memory on the stack. 
With dynamic programming (including memoization styles), we 
need to store the old results for use later. This takes up more and 
more memory as we accumulate a lot of partial results. Ultimately 
though, having these answers stored and easily accessible saves a 
lot of computation time. 

 

Exercises 
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1. Think of some other recursive algorithms that you 
have learned. Do any of them exhibit the features of 
optimal substructure and overlapping subproblems? 
Which do, and which do not? 

2
. Try to implement the dynamic programming 

algorithm for optimal matrix chain multiplication. Next, 
implement a simple procedure that calculates the cost of 
a naïve matrix multiplication order that is just a typical 
left-to-right multiplication grouping. Randomly generate 
lists of dimensions, and calculate the costs of optimal vs. 
naïve. What patterns do you observe? Are there features 
of matrix chains that imply optimizations? 

3
. Try to implement a recursive function to print the 

optimal parenthesization of the matrix multiplication 
chain given the splits table. Hint: Accept a start and end 
value, and for each split index s (splits[start][end]), 
recursively call the function for (start, s) and (s + 1, end). 

4
. Implement the recursive LCS algorithm in your 

language of choice, and extend it to report the actual LCS 
as a string. Hint: You may need to use a data structure to 
keep track of the current LCS elements. 

5
. Extend the LCS algorithm to implement an 

alignment algorithm for genetic code (strings containing 
only {“a,” “c,” “g,” “t”} elements). This could be done by 
adding a scoring system. When the algorithm assesses a 
diagonal, check if it is a match (exact element) or a 
mismatch (elements are not the same). Calculate an 
optimal score using the following rules: Matches get +2, 
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mismatches get −1, moving left or up counts as a “gap” and 
gets −2. Calculate the optimal alignment score using this 
method for the strings “acctg” and “gacta.” 
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11.  Graphs 

Learning Objectives 

After reading this chapter you will… 

• understand graphs as a mathematical structure. 
• be able to traverse graphs using well-known 

algorithms. 
• learn the scope of problems that can be addressed 

using graphs. 

Introduction 

Graphs are perhaps the most versatile data structure addressed in 
this book. As discussed in chapter 8, graphs at their simplest are 
just nodes and edges, with nodes representing things and the edges 
representing the relationships between those things. However, if we 
are creative enough, we can apply this concept to the following: 

• roads between cities 
• computer networks 
• business flow charts 
• finite state machines 
• social networks 
• family trees 
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• circuit design 

If we can represent a given problem using a graph, then we 
have access to many well-known algorithms to help us solve that 
problem. This chapter will introduce us to graphs as well as some of 
these algorithms. 

Brief Introduction to Graphs 

A formal introduction to graphs may be found in most discrete 
math textbooks. The purpose of this section is not to provide such 
an introduction. Rather, we will focus more on the data structures 
used to represent graphs and the algorithms associated with them. 
Regardless, some basic vocabulary will prove useful. 

Nodes are the primary objects under consideration in 
graphs. They are associated with other nodes by means of edges. 
Each edge is incident to two nodes. We define adjacent nodes of 
a given node as alternate nodes of incident edges. Adjacent nodes 
are sometimes referred to as neighbors. The degree of a node is 
the number of its incident edges or adjacent nodes (not including 
the node itself). Our depiction of graphs will look much like our 
depiction of trees. This should come as no surprise because, if you 
recall, trees are a special case of graphs. 

If you cross-reference this chapter against more 
mathematically focused textbooks (which is strongly encouraged), 
you will find that some of these definitions vary. In particular, 
mathematical textbooks typically refer to nodes as vertices. They 
are also more precise in mathematical notation. For example, this 
chapter will use the symbol N to denote the number of nodes in the 
graph. In a mathematics context, the set of nodes is represented as 
set V and the number of nodes as |V| (or the cardinality of V). 

Paths and cycles will play a large role in our graph 
algorithms. A path is some sequence of edges that allows you to 
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travel from one node to another. A cycle is a path that starts and 
ends at the same node. Sometimes cycles are useful, but they often 
represent challenges in graph algorithms. Failing to detect a cycle 
in graph algorithms often results in implementations falling into 
endless loops. 

Figure 11.1 

We will often need to consider whether a graph is directed 
or undirected. A directed graph is one in which each edge goes in 
a single direction. A network of flights across the United States is 
probably directed because every flight from city A to city B does not 
necessarily have a flight back from city B to city A. An undirected 
graph implies that we could traverse each edge in either direction. A 
network of roads between towns is likely undirected because most 
roads permit travel in both directions. If you reframe the network 
of roads, you could describe each lane as an edge, resulting in a 
directed graph. In our visual depictions of graphs, you will know 
whether a graph is directed or undirected by the use of arrows. Of 
the graphs below, the left graph represents an undirected graph, 
and the right represents a directed graph: 
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Figure 11.2 

Another distinction we make will be between weighted and 
unweighted graphs. Weighted graphs have a numerical value 
associated with each edge, which represents the weight of that 
edge. For example, roads between cities have distances, and 
computer networks have measures of latency. Some graphs have 
no meaningful numerical value for edges and are considered 
unweighted. For example, social networks may have no meaningful 
weight for the relationship between two people. Much of this 
chapter will focus on graphs that are both weighted and directed. 

Representations of Graphs 

In a discrete math class, these graphs would be represented with 
basic set notation. We, however, have the additional burden of 
needing to represent this in a machine-readable format. Two main 
strategies exist for representing graphs in data structures, but there 
are numerous variations on these. We may choose to modify or 
augment these structures depending on the specific problem, 
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language, or computing environment. For simplicity, we will only 
address the two main strategies. 

Adjacency Matrices 

An adjacency matrix is typically conceptualized as a table where the 
count of both rows and columns is equal to the number of nodes in 
the graph. Each row is assigned a node identifier, and each column 
is also assigned a node identifier. To determine whether an edge 
exists from node A to node B, we find the row for A and cross-
reference B. The information in that cell of the table then provides 
information regarding the nature of the edge from A to B. Consider 
the following example: 

Figure 11.3 

Notice that all we have asserted so far is that the 
intersection of the row and column supplies information about the 
nature of the edge. The data we store at each intersection depends 
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on the type of graph we are modeling. Some considerations for 
adjacency matrices include the following: 

• Weighted or Unweighted: If the graph is weighted, 
intersections will store the weight of the edge as some 
numeric type. In unweighted graphs, the intersection simply 
stores whether the edge exists. 

• Directed or Undirected: If the graph is undirected, each 
nondiagonal intersection stores redundant information with 
exactly one other cell. For example, if an undirected graph has 
an edge between A and B, then the (A, B) intersection stores 
the same information as (B, A). On occasion, this may be 
desirable or undesirable. Naturally, a directed graph would 
store nonredundant information in each cell. 

• Node Identities: The most logical choice for an underlying data 
structure would be a two-dimensional array. To leverage the 
constant-time lookups, we must provide an integer identifier 
for each node. 

• Existence of Edges: Regardless of the points above, we must 
determine how to indicate that no edge exists. While many 
modern languages have some concept of a nullable type, you 
may not always want to use it. Particularly, nullable types often 
come with an implied increase in storage size (it may take 32 
bits to store an integer, but storing an integer along with 
whether it exists is more information and consequently more 
bits). As a result, we might, by convention, choose a value to 
store in the matrix that indicates that no edge exists. Most 
weighted graphs in the natural world have strictly positive 
weights, so storing a −1 may serve as a useful indicator for a 
nonexistent edge. When working with an unweighted graph, 
simple 0s and 1s or true and false will suffice. 

302  |  Graphs



Adjacency Lists 

If we perceive an adjacency matrix as a square table of edge 
information, an adjacency list is a jagged list of lists. The primary 
list has one entry for each node in the graph. Each of those entries 
then points to a list of adjacent nodes. The size of each secondary 
list depends on the degree of that node. Using the same graph as we 
used for adjacency matrices, we have the following adjacency list. 

Figure 11.4 

This is how adjacency lists are often portrayed visually, but 
we should note that the word “list” is in reference to the abstract 
data type list rather than a linked list. Also note that while the 
primary list clearly stores nodes, the secondary lists effectively 
store edges. 

The list of lists nature of adjacency lists may be 
implemented in numerous ways. Considerations for concrete 
implementations include the following: 

• Weighted or Unweighted: Weighted graphs require each entry 
in the secondary lists to store both the adjacent node’s identity 
and that edge’s weight. For this reason, we cannot store simple 
primitive types in each secondary entry. This implies that we 

Graphs  |  303



will likely need some kinds of composite types such as objects 
or structs. Unweighted graphs are easily stored using the 
identity of the node and may not require additional types. 

• Directed or Undirected: As with adjacency matrices, 
undirected graphs tend to lead toward redundancy in data. If 
an undirected graph has an edge between A and B, then A’s 
secondary list stores a reference to B, and B’s secondary list 
stores a reference to A. Directed graphs have no such concern. 

• Underlying Data Structures: As with adjacency matrices, it may 
be convenient to identify each node using an integer. This 
allows us to leverage constant-time lookups when looking for 
nodes in primary or secondary lists. Unlike adjacency matrices, 
using arrays for secondary lists may pose additional challenges 
if edges are frequently added or removed (due to the fixed size 
of arrays). 

Algorithms 

Much like our discussion of trees, graph algorithms could consume 
chapters of a textbook. Rather than a broad survey of problems and 
known algorithms, we will address only three specific problems. 

Traversal 

Two frequent questions with graphs are (1) how we can visit each 
node and (2) if we can find a path between two nodes. They arise 
whenever we want to broadcast on a network, find a route between 
two cities, or help a virtual actor through a maze. We rely on two 
related algorithms to accomplish this task: breadth first traversal 
and depth first traversal. If we wish to perform a search, we simply 
terminate the traversal once the target node has been located. 
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Both algorithms depend on knowing some start node. If we 
are attempting to traverse all nodes, a start node may be chosen 
arbitrarily. If we wish to find a path from one node to another, we 
obviously must choose our start node deliberately. Both algorithms 
work from the same basic principle: if we wish to visit every node 
originating from some start node, we first visit its neighbors, its 
neighbors’ neighbors, and so on until all nodes have been visited. 
The primary distinction between both is the order in which we 
consider the next node. Breadth first spreads slowly, favoring nodes 
closest to the start node. Depth first reaches as deep as possible 
quickly. Below are examples of both traversals. Note that there is 
no unique breadth first or depth first traversal, but rather they 
are dependent on a precise implementation. The examples below 
represent possible traversals. There are other possibilities. 

Figure 11.5 

Note the difference in these traversals. Because breadth 
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first starting from A will consider all A’s neighbors first, we will 
encounter C before we encounter F. Depth first will instead 
prioritize B’s neighbors before completing all of A’s neighbors. As a 
result, depth first reaches F before breadth first does. 

In addition to the order in which we visit neighbors, we 
must also pay close attention to cycles. Recall that cycles are paths 
that start and end at the same node. In the depth first example 
above, what happens when we finally visit C only to find its neighbor 
is A? If we fail to recognize this as a cycle, we will again traverse 
A B D F E C and continue to do so indefinitely. We must avoid 
visiting already visited nodes. We will need to incorporate this into 
the algorithm as well. 

Below is the pseudocode for a breadth first traversal. The 
function call Visit is simply a placeholder for some meaningful 
action you might take at each node (the simplest of which is simply 
printing the node identifier). It also assumes that node identifiers 
are integers. 

Consider the above pseudocode along with figure 11.5. 
Assume a mapping from the letters A–F to integers 1–6, respectively. 
We first enqueue A. The queue is not empty, so we dequeue A. We 
have not yet visited it, so we visit, mark as visited, then enqueue the 
neighbors (B and C). In the case of breadth first, these two nodes 
were enqueued before D, E, and F. As a result, B and C will be visited 
before D, E, and F. 

Also note the utility of the visited array. We visit a node, 
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mark it as visited, then enqueue its neighbors. Once we have visited 
a node and enqueued its neighbors, the conditional on line 9 will 
prevent us from doing the same again. This is our mechanism for 
avoiding cycles. 

This pseudocode describes a breadth first traversal but 
only requires a nominal change to make it a depth first traversal. 
Recall that after we visited A, we visited B and C. This was due to 
the first-in-first-out nature of queues. Consider what happens if 
we swap our queue for a stack. We visit A and now push B and C. 
C was the last node pushed, so a pop returns it. We then push A 
and E, which will eventually be popped before B. As a result, we 
prioritize nodes deep in the graph before ever considering B. In fact, 
we eventually consider B due to its adjacency to D rather than its 
adjacency to A. 

Three aspects of graph algorithms make runtime analysis 
difficult. Because of these challenges, runtime analysis in this 
chapter will be less precise than in others but still descriptive as to 
roughly how much effort is required to perform the task at hand. 

• We are typically working with two variables: count of nodes 
and count of edges. In the case of breadth first traversal, we 
can see that we will only visit each node once. We also 
enqueue and dequeue once for each edge (plus an additional 
enqueue/dequeue for the start node). This gives us a runtime 
of O(N + E), where N is the number of nodes and E is the 
number of edges. 

• Analysis can be confusing because the upper bound of E is 
O(N2). An explanation of why can be found in Discrete 
Mathematics: An Open Introduction (found in the references for 
this chapter). There the author explains how the number of 
edges in a complete graph relates to the number of nodes. The 
explanation closely resembles the justification for O(N2) 
runtime of selection and Insertion Sort. Because of these two 
aspects, we can correctly say O(N+E) or O(N2), the choice of 
which is typically dependent on the current context. If we 
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know that the number of edges is relatively low compared to 
the number of nodes, then use the sum of the two. If we know 
the graph to be highly connected, it is better to recognize the 
runtime as quadratic. 

• Algorithms are typically presented conceptually without 
regard to precise implementations of graphs or auxiliary data 
structures. For example, if we are working in an object-
oriented system, we may leverage adjacency lists, which limit 
our ability to perform constant-time indexing into the adjacent 
nodes. If we have no mapping from nodes to integers, we may 
have to perform Linear Searches to determine if nodes have 
been visited. 

Single Source Shortest Path 

While breadth first and depth first searches provide a path from 
a source to a destination, they do not guarantee an efficient path. 
Accomplishing such a task requires that the algorithm consider the 
weights of the edges that it traverses as well as the cumulative 
weights of edges already traversed. Numerous algorithms exist to 
find the shortest path from one node to another, but this section 
will focus on Edgar Dijkstra’s algorithm. 

Dijkstra’s algorithm determines the shortest path between 
a source and destination node by maintaining a list of minimum 
distances required to reach each node already visited by the 
algorithm. It is an example of a greedy algorithm. This is a general 
strategy employed in algorithms, akin to the divide-and-conquer 
strategy employed in Binary Search or Merge Sort. Greedy 
algorithms make locally optimal choices that trend toward globally 
optimal solutions. In the case of Dijkstra’s (and Prim’s to follow), we 
only consider a single node at a time and use the information at 
that location in the graph to update the global state. If we carry this 
strategy out in clever ways, we can indeed determine the shortest 
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path between two nodes without each step considering the entire 
graph. 

In the following graph, consider finding the shortest path 
from A to D. Note that in the initial state, we acknowledge that the 
distance from the source node to itself is 0. This is analogous to 
enqueuing or pushing the source node in breadth first and depth 
first traversals. The primary control flow will again be a loop, which 
selects the next node to consider. Initializing some state again 
provides the loop with a logical place to begin. Also note that we 
maintain predecessors for each node whenever we update the 
distance to that node. This helps traverse the shortest path after the 
algorithm has been completed. 

Figure 11.6 

Now that we have some predefined state, we will begin our 
iteration to update the distance and predecessor arrays with the 
best information we know so far. Given the nodes we have visited 
so far (namely, A), we know we can reach B with a weight of 4 
and predecessor node A. We can also reach C with weight 6 and 
predecessor node A. Note here that we are not claiming that the 
edge AB is the shortest path from A to B or that AC is the shortest 
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path from A to C. What we are claiming is that of the nodes visited 
so far, the minimum weight paths to B or C are 4 and 6, respectively. 
We then start the next iteration by carefully choosing the next node 
to visit. It should be one that has not yet been visited so that we do 
not create cycles. Additionally, regarding the shortest path, we must 
choose the next node based on which has the minimum distance 
from the starting node. We then repeat this process until each node 
is visited or we reach some desired destination node. 

Figure 11.7 
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As with breadth first and depth first traversals, the precise 
runtime cannot be determined without specifying exactly how 
visited, distance, predecessors, and edges are structured. What we 
can determine with certainty is that the while-loop will iterate the 
same number of times as the number of nodes in the graph. This is 
evident because each iteration marks a node as visited, and the loop 
terminates when all nodes are visited. Assuming we are looking for 
all shortest paths (or our destination node is the last to be visited), 
we will perform the body of the inner loop once for each edge in 
the graph. This very closely approximates the runtime behavior of 
the traversal algorithms earlier and results in a likely worst-case 
runtime of O(N2). However, Dijkstra’s algorithm is well researched, 
and known improvements can be made to this runtime by choosing 
clever data structures to represent different components. 

Minimum Spanning Trees (MSTs) 

A Minimum Spanning Tree (MST) is a subgraph (subset of edges) that 
satisfies the following conditions: 

1. It must be a tree. In other words, there must be no cycles 
within the subgraph. 

2. It must be spanning, which means that all the nodes in the 
original graph exist in the subgraph and are reachable using 
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only the edges in the subgraph. 
3. It is possible to have more than one spanning tree for a given 

graph. Of those possible spanning trees, the MST is the one 
with the lowest cumulative edge weight. 

As with other graph properties and algorithms, MSTs have 
numerous applications in the natural world. The canonical example 
is that of a network broadcast. Imagine computers as nodes and 
the network connections between them as edges. In computer 
networking, we often want to be able to broadcast a message to all 
nodes on the network (or, put simply, ensure that all nodes receive a 
particular message). The MST represents the lowest-cost means of 
transmitting such a message. Note that this is not the fastest means 
of transmission. That would indeed be a tree created by running a 
single-source shortest-path algorithm like Dijkstra’s. 

As with single-source shortest path, MSTs can be produced 
via numerous algorithms. The only one we address here is Prim’s. 
We do so due to its similarity with Dijkstra’s. Dijkstra’s produced 
shortest paths by comparing a known distance against the sum 
of the cumulative distance to the predecessor plus the newly 
considered edge (see line 11 in the pseudocode). This comparison 
can be made because the distance for a node denotes the shortest 
path we have considered so far. Prim’s algorithm changes the 
meaning of the distance value as well as the comparison on line 
11. Rather than representing the cumulative distance as we did for 
shortest path, distance now represents the cost to add that node 
into the MST. The final change is simple: if we remove n.Dist from 
both lines 11 and 12, then we now find the MST rather than a 
shortest-path tree. 

 

Exercises 
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1. Imagine you have a sparse graph with a large 
number of nodes but a relatively small number of edges. 
You are working in a system with strict constraints on 
how much memory you can consume. How does this 
impact your decision between an adjacency matrix and an 
adjacency list? 

2
. The breadth first example and pseudocode assume 

an unweighted and undirected graph. Does this pseudo 
code change if the graph is weighted? What if it is 
directed? 

3
. Consider an array of numbers. Devise a way of 

sorting these numbers using the graph algorithms from 
this chapter. The challenging part here is to determine 
how to model the array as a graph. Hint: What if the 
numbers are nodes, each node is connected to each other 
node, and the weight is the difference between the two 
nodes’ values? 
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12.  Hard Problems 

Learning Objectives 

After reading this chapter you will… 

• understand how computer scientists classify 
problems. 

• be able to define some of the most common classes 
of problems in computer science. 

• be able to explain the relationship between P and 
NP problem classes. 

• understand some key properties of NP-complete 
and NP-hard problems. 

• understand the role of approximate solutions and 
heuristics in battling hard problems. 

Introduction 

Everyone in life faces hard problems. Figuring out what to do with 
your life or career can be hard. You may find it hard to choose 
between two delicious menu items. These problems, while “hard” 
in their own way, are not the kinds of hard problems we will be 
exploring in this chapter. In this chapter, we will introduce some 
of the key ideas that support the theory of computation, the 
theoretical foundation of computer science. The discovery of these 
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concepts is rather recent in the history of science and mathematics, 
but these concepts provide some fascinating insight into how 
humanity may attempt to solve the most difficult problems. 

In the following sections, we will introduce the most 
discussed complexity classes in theoretical computer science. 
These are the complexity classes of P, NP, NP-complete, and NP-
hard. These classes highlight many interesting and important 
results in computer science. We will explore what makes problems 
“easy” or “hard” in a theoretical sense. We will then explore some 
concepts for tackling these hard problems using approximations 
and heuristics. Finally, we will end the chapter with a discussion of 
an “impossible” problem, the halting problem, and what this means 
for computability. 

The goal of this chapter is to simply introduce some of the 
important theoretical results in computer science and to highlight 
some ways in which this knowledge can be practical to a student of 
computer science. We will not introduce a lot of formal definitions 
or attempt to prove any results. This chapter is to serve as a 
jumping-off point for further study and, hopefully, an inspiring 
introduction to some of science’s most profound discoveries about 
computing and problem-solving. 

Easy vs. Hard 

In some ways, what computer scientists view as an easy or hard 
problem is very simple to determine. Generally, if a problem can 
be solved in polynomial time—that is, O(nk) for some constant k—it 
is considered an easy problem. Another word that is used for this 
type of problem is “tractable.” Problems that cannot be solved in 
polynomial time are said to be “intractable” or hard. These include 
problems whose algorithms scale exponentially by O(2n), factorially 
by O(n!), or by any other function that grows faster than an O(nk) 
polynomial function. Remember though, we are thinking in a 
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theoretical context. Supposing that k is the constant 273, then even 
with the small n of 2, 2273 is a number larger than the estimated 
number of atoms in the universe. In practice, though, few if any real 
problems have algorithms with such large degree polynomial scaling 
functions. By similar reasoning, some specific problem instances of 
our theoretically intractable problems can be exactly solved in a 
reasonable amount of time. In general, this is not the case though. 
Interesting problems in the real world remain challenging to solve 
exactly, but many of them can be approximated. These “pretty good” 
solutions can still be very useful. In the discussions below, we will 
mostly focus on time complexity, but a lot of theoretical study has 
gone into space complexity as well. Let’s explore these ideas a bit 
more formally. 

The P Complexity Class 

In our discussion of hard problems, we need to first define some 
sets of problems and their properties. First, let’s think about a 
problem that needs to be solved by a computer. A sorting problem, 
for example, provides an ordered list of numbers and asks that they 
be sorted. Solving this problem would provide the same numbers 
reordered such that they are all in increasing order. We know that 
there exist sorting algorithms that can solve this problem in O(n2) 
and even O(n log n) time. Problems such as these belong to the P 
complexity class. P represents the set of all problems for which 
there exists a polynomial time algorithm to solve them. This means 
that an algorithm exists for solving these problems with a time 
scaling function bounded by O(nk) for some constant k. 

Strictly speaking, P is reserved only for decision problems, 
a problem with only a yes or no solution. This is not a serious 
limitation from our perspective. Many of the problems we have seen 
in this book can be easily reformulated as decision problems of 
equal difficulty. Suppose there is an algorithm, let’s identify it as 
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A, that solves instances of a decision problem in P. If A can solve 
any instance of the problem in polynomial time, then we say that 
A decides that set of problem instances. For any input that is an 
instance of our problem, A will report 1. In this case, we say A 
accepts the input. If any input is not an instance of that decision 
problem, A will report 0. In this case, we say A rejects that input. 

By framing our algorithms as decision problems, we can 
rely on some concepts from formal language theory. From this 
framework, we think about encoding our inputs as strings of 0 and 
1 symbols. We should know numbers can be encoded in binary, 
but other types of data, such as images and symbol data, can also 
be so encoded. At some level, all their data are stored in binary 
on your phone or computer. We can use 0 and 1 as symbols to 
construct the strings of our binary language. In the formal language 
model, A acts as a language recognizer. If the input string is part 
of our specific language of problem instances, A will accept it as 
part of the language. If an input string is not part of the problem 
set of instances, A will reject it as we discussed in the previous 
paragraph. This is one of the formalizations that have been used 
to reason about problems in theoretical computer science. We will 
not explore formal languages any further here, but this model is 
equivalent to the practical problem-solving we have explored in this 
textbook. The language model also closely relates to the simplest 
theoretical model of computing, the Turing Machine. 

The concept of determinism is another important idea to 
introduce in our discussion of the complexity class P. The P class is 
described as the class of deterministic polynomial time problems. 
This requires a bit of subtlety to describe accurately. For now, we 
will just say that the algorithms for solving problems in P function 
deterministically in a step-by-step fashion. This could be 
interpreted as meaning that the algorithms can only take one step 
at a time in their execution. This definition will make more sense 
as we discuss the next complexity class, NP, or the class of 
nondeterministic polynomial time problems. 
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The NP Complexity Class 

We think of problems in P as being easy because “efficient” 
algorithms exist to solve them. By efficient, we mean having 
polynomial time complexity, O(nk). The NP complexity class 
introduces some problems that can be considered fairly hard. NP 
stands for nondeterministic polynomial time complexity. The NP 
class of problems introduces the idea of solution verification. If you 
were given the solution for an algorithm, could you verify that it was 
correct? Think about how you might verify that a list of numbers is 
sorted. How could you verify that 7! = 5040? I’m sure you can think 
of several ways to easily check these answers in a short amount 
of time. Again, we will focus on decision problems, but decision 
versions of all problems can be constructed such that we do not 
lose generality in this discussion. For a problem to be in NP, there 
must exist an algorithm A that verifies instances of the problem by 
checking a “proof” or “certificate.” You may think of the certificate 
as a solution to the problem that must be verified in polynomial 
time. 

NP leaves the question of whether a problem can be solved 
quickly and considers whether the solution could be verified 
quickly. The nondeterministic part refers to the idea of ignoring 
how quickly the problem could be solved. We mentioned that a 
deterministic algorithm could take only one step at a time. We 
could think of a nondeterministic algorithm as one that could take 
many steps “at the same time.” One interpretation of this might be 
considering all options simultaneously. The main takeaway is that 
a correct solution must be verifiable in polynomial time for the 
problem to be a member of NP. 
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An Example of an NP Problem: 
Hamiltonian Cycle 

At this point in our discussion, it may be helpful to examine a classic 
example of a problem in NP. A Hamiltonian cycle is a path in a 
graph that visits all nodes exactly once and returns to the path’s 
start. Finding this kind of cycle can be useful. Consider a delivery 
truck that needs to make many stops. A helpful path might be one 
that leaves the warehouse, visits all the necessary stops (without 
repeating any), and returns to the warehouse. For the example 
graph below, we may wish to solve the decision problem of “Given 
the graph G = {V, E}, does a Hamiltonian cycle exist?” 

Figure 12.1 

We will discuss the complexity of solving this problem 
soon, but for now, we will consider how to verify a solution to the 
problem. Suppose that we are given this problem and a potential 
solution. How would we verify the correctness of the solution? The 
“proof” or “certificate” of this problem could be the ordered list 

320  |  Hard Problems



of vertices in the cycle. We could easily verify this solution by 
attempting to traverse the nodes (or vertices) in order along the 
graph. If we visit all the vertices and return to the starting vertex, 
the verification algorithm could report “yes.” This would only 
require work proportional to the number of nodes, so verifying 
a solution to the Hamiltonian cycle problem would have a time 
complexity of O(n), where n is the number of nodes in the graph. 
This means that this problem could be easily verified, and by “easily,” 
we mean it could be verified in polynomial time. For the above 
graph, a Hamiltonian cycle would be {E, A, C, B, D, G, F, H, E}. Note 
that we must return to the original position for the path to be a 
cycle. This is illustrated below: 

Figure 12.2 

The fact that the Hamiltonian cycle problem can be easily 
verified may give the (false) impression that it is also easily solvable. 
This does not appear to be the case. One approach to solve it 
might be to enumerate all the possible cycles and verify each one. 
Each cycle would be some permutation of all the vertices. With 
n as the number of vertices in the graph, this means that there 
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would be O(n!) possible orderings to check! This naïve algorithm is 
even slower than exponential time O(2n). In fact, one of the best 
algorithms known to solve it has a runtime complexity of 
O(2nn2)—better than O(n!) but still extremely slow for relatively 
small n. 

Before we move on to the next section, let’s consider the 
P complexity class in the context of NP. It should be clear that 
any problem in P must also be in NP. If a problem can be easily 
solved, it should also be easily verified. Consider for a moment the 
opposite situation where a problem is easy to solve but difficult to 
verify. Struggling to verify a solution to a problem might call into 
question how easily it was solved. The complexity class P represents 
all problems solved in polynomial time, and it is a subset of the NP 
class. Now whether it is a “proper subset” or not of NP is a classic 
unsolved problem in computer science theory. A proper subset 
means that it cannot be equivalent to the NP class itself. From this 
discussion, it may seem as though P and NP are not the same set, 
but many brilliant mathematicians and scientists have attempted 
to prove or disprove this fact without any success for decades. 
Whether P = NP or not remains unknown. In the next section, we 
will discuss this further and highlight just why the P = NP or P ≠ NP 
question is so interesting. 

Polynomial Time Reductions 

In this section, we will introduce the idea of a reduction. Informally, 
the term “reduction” refers to a method of casting one problem 
instance as an instance of another problem such that solving the 
new “reduced” problem also solves the original. As we explore the 
next two complexity classes of NP-hard and NP-complete, we use 
this powerful idea of reductions. Using an efficient reduction to 
transform one problem into another would serve as a key to solving 
a lot of different problems. 
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We will briefly consider a classic problem known as the 
Circuit-Satisfiability Problem. This is often abbreviated as 
CIRCUIT-SAT, but this could also represent the set of all circuit 
satisfiability problems (or, specifically, their instances). Suppose we 
want to determine if a circuit composed of logic gates has some 
assignment to its inputs that makes the overall circuit output 1. The 
circuits are composed of logic gates that take inputs that are either 
0 or 1, standing for either low or high voltage. The typical diagram 
for these gates is given below: 

Figure 12.3 

These gates correspond to their interpretation in 
mathematical logic. This means that the AND gate will output a 1 
when both of its inputs are 1. We can compose these gates into 
larger circuits. The image below presents an example of a circuit 
that uses several of these gates and takes three inputs, marked X, Y, 
and Z: 
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Figure 12.4 

The decision problem for CIRCUIT-SAT would decide the 
question of “Given a representation of a circuit composed of logic 
gates, does an assignment of zeros and ones to the inputs exist that 
makes the overall circuit output 1?” Such an assignment of inputs 
is said to satisfy the circuit. One method of solving this problem 
would be to try all possible combinations of 0 and 1 assignments. 
Given n inputs, this would be attempting to try O(2n) possibilities. 
Given a potential solution, we could verify the assignment satisfies 
the circuit by simply simulating the propagation of input values 
through the sequence of logic gates. An algorithm for solving 
CIRCUIT-SAT problems would be very useful. Let’s look at why. 

Suppose we have another problem we wish to solve: Given 
a logical formula, can we provide an assignment to the logical 
Boolean variables that satisfies the formula? To satisfy the formula 
means to find an assignment of true or false values to the variables 
that makes the overall formula true. This is known as the Boolean 
satisfiability problem, and these problem instances are usually 
referred to as the set SAT. A logical formula can be composed 
of variables and Boolean functions on those variables. These are 
the functions AND, OR, and NOT. These are usually written as the 
symbols ˄ (AND), ˅ (OR), and ¬ (NOT). Additionally, the formulas use 
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parentheses to make sure there are no ambiguous connections. An 
example of a Boolean formula is given below: 

(x ˄ y) ˅ (¬x ˄ z). 

Formulas such as this can be used to model many problems 
in computer science. If we had an algorithm that could solve 
CIRCUIT-SAT problems, Boolean formula problems could be solved 
by first constructing a circuit that matched the formula and then 
passing that circuit representation to the algorithm that decides 
CIRCUIT-SAT. The figure below gives a circuit that corresponds to 
the Boolean formula given above: 

Figure 12.5 

An assignment of 0 or 1 to the inputs of this circuit would 
correspond to an assignment of true or false to the Boolean 
variables of the formula. While not a formal proof, hopefully this 
illustration demonstrates how one instance of a problem can be 
cast into another and a solution to one can be used to solve the 
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other. A key point is that this conversion must also be efficient. 
For this strategy to be effective, the reduction from one problem 
(SAT) to another problem (CIRCUIT-SAT) must also be efficient. If just 
doing the reduction was intractable and difficult, then we would 
not make any progress. We will only be interested in reductions 
that can be done in polynomial time. For this problem, we could 
create a procedure that would parse a string representation of the 
formula and generate a parse tree. From this tree, we could use each 
branching node to represent a logic gate, and from this, we could 
construct a representation of the circuit. Generating the parse tree 
might require O(n3) operations (this is an upper bound on some 
parsing algorithms), and converting the tree could be done using a 
tree traversal costing O(n). This means that for this case, we could 
efficiently “reduce” the SAT problem into an instance of CIRCUIT-
SAT. 

We will introduce the notation for reducibility here, as it 
will be helpful in the following discussions. Remember that we can 
also talk about the representations of problems as being strings 
in a language. We might say that SAT, or all the problems in SAT, 
represents a language L1. The problems in CIRCUIT-SAT represent 
the language L2. Now to capture the above discussion in this 
notation, we would write L1 ≤P L2, using a less than or equal to 
symbol with a P subscript. The meaning of L1 ≤P L2 is that L1 is 
polynomial-time reducible into an instance of L2. The less than or 
equal to symbol is used to mean that problems in L2 are at least as 
hard as problems in L1. The P subscript is there to remind us that the 
reduction must be doable in polynomial time for this to be a useful 
reduction. 

Let’s provide one more example of a reduction. Another 
interesting and well-studied problem in computer science is the 
Traveling Salesman Problem or TSP. This problem tries to solve 
the practical task of minimizing the amount of travel between the 
different cities for a salesperson before they return home. Another 
way to cast the problem might be to ask, “What is the route that 
minimizes energy usage for a delivery truck such that it makes 
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all its stops and returns to the warehouse?” You may already be 
thinking back to our discussion of Hamiltonian cycles. The TSP is 
looking for a minimum-cost tour, which is precisely a Hamiltonian 
cycle. To consider the decision version of the TSP, we would take 
a graph with edge weights representing the costs of traveling from 
one destination to another and a cost threshold k. The decision 
problem then asks, “Given the weighted graph G and the threshold 
k, does there exist a minimum cost tour with a cost at most k?” So 
an instance of the Hamiltonian cycle problem could be reduced to 
an instance of the TSP. Taking an instance of the Hamiltonian cycle 
problem, we could construct a new graph with all edge weights set 
to 0. This could be done easily in polynomial time by modifying the 
representation of the graphic. This new weighted graph could be 
passed to an algorithm from solving TSP with k set to 0. Let’s let the 
set of all instances of Hamiltonian cycle problems be HAM-CYCLE. 
This means that we have HAM-CYCLE ≤P TSP, and any algorithm 
that solves instances of TSP can solve instances of HAM-CYCLE. 

The NP-Hard and NP-Complete 
Complexity Classes 

Reductions serve as a key to solving problems by taking them from 
one type of problem and transforming them into another. We 
explored two examples of reductions in the previous section. The 
SAT problems are reducible to the CIRCUIT-SAT problems. The 
HAM-CYCLE problems are reducible to the TSP problems. Other 
clever results have demonstrated that three-coloring a graph is 
reducible to the SAT problems. Interestingly, there are algorithms 
that can solve any problem in NP by reducing them from other 
problem types into an instance of a specific NP problem. These 
problems represent the NP-hard complexity class. More formally, 
an NP-hard problem is a problem (language) L, such that for any 
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problem L′ in NP, L′ ≤P L. In other words, any algorithm for solving 
an NP-hard problem could solve any problem in NP. All four of our 
problems—CIRCUIT-SAT, SAT, HAM-CYCLE, and TSP—are NP-hard. 
The Cook–Levin theorem proved an interesting result showing that 
SAT is both in NP-hard (can be used to solve any NP problem) 
and in NP (easily verifiable). The class of problems with these 
characteristics is known as the NP-complete problems. 

Now we revisit the P = NP or P ≠ NP question. Why is 
this a big deal? Suppose a problem set (and algorithm) could be 
found that was in NP-complete and in P. This would mean we have 
an NP-hard problem that can be easily solved. This result would 
mean that any NP problem could be easily solved in O(nk) time. 
We would simply reduce any NP problem into an instance of our 
special problem and solve it in polynomial time. This scenario would 
be the incredible result of a P = NP reality. The question is still 
up for debate, and no one has been able to prove this fact or, 
more importantly, find the algorithm. A world in which all difficult 
problems could be easily solved would certainly be interesting. For 
now, it is unknown whether P = NP or P ≠ NP. Many believe that P ≠ 
NP is the more likely scenario, but it has never been proven. 

Approximation Algorithms and Heuristics 

We should discuss the practical matter of how to solve difficult 
problems. We have given a somewhat formal description of NP-
Hard and NP-Complete complexity classes, but let’s reconsider 
these problems in practical terms. Suppose we need to solve a SAT 
problem with 60 variables, and we brute-force search by trying 
every combination of Boolean assignments and evaluating them. 
The brute-force search requires O(2n) operations. So with 60 
variables, the number of combinations is on the order of 260. We 
call the set of all possible solutions the search space. If we assume 
a computer could check 2 billion of these possible assignment 
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solutions per second (which is reasonable), we could expect the 
calculation to be completed in about 18 years. The worst-case 
exponential time complexity for exploring the search space means 
that solving these problems quickly is impossible even for relatively 
small n (< 100). 

We want solutions very quickly and cannot wait 18 years 
to figure out our best delivery route for this morning’s deliveries. 
Delivery companies want to be efficient to conserve energy. 
Factories want to maximize output and keep their machines 
running. Sometimes a great approximate solution to an NP-
complete problem can be found quickly. An approximate solution 
is not totally correct, but it may satisfy many of the problem’s 
requirements. Suppose that we found a SAT assignment that could 
satisfy most of our Boolean formula’s expressions in the previous 
example; then this might still be very useful. Many real-world 
problems can be modeled by NP-complete problems, so finding 
good approximations for them is important work. 

Many strategies exist for finding good approximations. The 
search for a good approximation can be framed as an optimization 
problem. We want to optimize a current solution’s value toward the 
optimal value of a fully correct solution. One approach might be 
to randomly try many different solutions and calculate the value. 
Each time you find a solution with a better value, you save it as 
the current best. You let the algorithm run for a fixed amount 
of time. When the time is up, return the best solution that was 
found. In general, the search for a good approximation makes use 
of heuristics. Heuristics are strategies or policies that help direct 
a search algorithm toward better approximations. The hope is that 
the heuristic will help guide the search toward an optimal solution. 
Unfortunately, this is not a guarantee. Algorithms usually act on 
local information, so any heuristic might be guiding the search 
toward a local optimum while the global optimum is in the other 
direction. Developing heuristics for NP-complete problems is an 
active field of research. We will look at one heuristic, the greedy 
algorithm, and see how it might be applied to an NP-Hard problem. 

Hard Problems  |  329



The greedy algorithm uses the heuristic to always make the 
choice that maximizes the current value. To explore this heuristic, 
we will introduce another NP-hard problem. The bin packing 
problem seeks to optimally pack objects of different sizes into a 
fixed-size bin. Each item has a cost associated with it, and the bin 
has a capacity threshold where no items may be added that would 
push the total cost over the threshold. You can think of this as 
the bin getting full of stuff, and nothing else can be put in it. The 
example below gives an illustration of the bin packing problem: 

Figure 12.6 

Given the boxes and their sizes, is there a way to pack all 
the boxes in the minimum number of bins? It might seem simple, 
but to solve this problem optimally, in general, might require a lot of 
time. One approach to finding the optimal number of bins would be 
to try all orderings of the items. Attempt to create bins by taking the 
items in the ordering and opening a new bin when the first is full. 
By trying all possible orderings of the items, the optimal bin number 
would be found, but this would take O(n!) time. 
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Using the greedy heuristic may help speed up our search 
even if the result may be suboptimal. A greedy algorithm tries to 
maximize or minimize the current value associated with a solution. 
For bin packing, a greedy strategy would be to always put the 
current item in the bin that minimizes the bin’s extra capacity. In 
other words, put the item in the bin where it fits the tightest. This 
is known as the Best Fit algorithm. An example of a Best Fit solution 
is presented below for the ordering {3, 3, 2, 3, 1, 2, 2, 5, 7, 2}. This 
assumes that the items arrive in a fixed order, and they cannot be 
reordered. We do get to choose which bin to place them in though. 
This is sometimes known as the “online” version of the bin packing 
problem. 

Figure 12.7 

At each step, the algorithm tries to create the most tightly 
packed bin possible. A clever algorithm for Best Fit achieves an O(n 
log n) time complexity by querying bins by their remaining capacity 
in a balanced binary search tree. This algorithm is extremely fast 
compared to the brute-force method, but it is not optimal. Below is 
an optimal solution: 
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Figure 12.8 

Depending on whether the items can be reordered or not, 
we may have the opportunity to first sort the items before applying 
Best Fit. Another good greedy algorithm for bin packing first sorts 
the items into descending order and then applies the Best Fit 
algorithm. This is known as Best Fit Decreasing. The figure below 
shows the result of applying Best Fit Decreasing to our block 
problem. This strategy does yield an optimal solution in this case. 
This algorithm would also have an O(n log n) time complexity. These 
algorithms show the value of using a heuristic to discover a good 
approximate solution to a very difficult problem in a reasonable 
amount of time. 
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Figure 12.9 

Bin packing provides insight into another feature of NP-
complete and NP-hard problems. The decision version of the bin 
packing problem asks, “Given the n items and their sizes, can all 
items be packed into k or fewer bins?” This decision problem turns 
out to be NP-Complete. Given a potential solution and the number 
of bins, we can easily verify the number of bins used and the excess 
capacity in O(n) time. This fact confirms that the problem is in NP. 
Even with a target number of bins given, we would have to try 
overwhelmingly many configurations to ultimately determine if all 
the items would fit into the k bins. Now we may also be interested 
in determining the optimal number of bins. This decision problem 
might be asked as “Given the n items and their sizes, does the 
minimum packing require at most k bins?” Consider how we might 
verify that the optimal configuration was found. This means that we 
were given a solution and told it is optimal. We would now need 
to verify it. We could easily verify if the solution fits into the given 
number of bins. On the other hand, verifying that the number of 
bins for this solution is optimal would require considering all the 
possible solutions and checking that no other solution exists with 
a smaller number of bins. This means that the optimization version 
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of this problem is not in NP. Therefore, the optimization problem is 
only NP-hard and not NP-complete. This pattern is common with 
NP-complete problems. If the decision version of a problem is NP-
complete, its optimization version is usually only in NP-hard. 

The Halting Problem 

Before we end the chapter, we should discuss one of the classic 
problems in computer science, the halting problem. The halting 
problem illustrates the existence of “unsolvable” problems. Alan 
Turing proved the existence of a particular undecidable problem. 
The halting problem can be defined as asking the question “Given 
a representation of a computer program and the program input, 
will the program halt for that given input or run forever?” Turing’s 
argument proposed the existence of a program (an algorithm 
running on a machine) that could detect if another program would 
halt given a specific input. Let’s just informally say we have a 
function like checkIfHalts(program, input). If the input program 
would halt, meaning complete successfully, on the given input, then 
checkIfHalts would report yes. If the program would run forever 
given the input, checkIfHalts would report no. This would be an 
algorithm that decides the halting problem. Running this 
hypothetical algorithm on a machine would allow a scheme for 
deciding if a program would halt. The program checkIfHalts would 
simulate the program P with the given input and decide if P halts on 
the input. This machine is presented in a diagram below: 
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Figure 12.10 

The interesting part of the argument suggests that our 
program runs with its own representation presented as the input. 
Let’s construct another machine using checkIfHalts that will run 
forever if the program halts given an input but will halt if the 
program runs forever (as verified by checkIfHalts). Below is a 
diagram of this machine. We will call it loopIfHalts. 

Figure 12.11 

Now we construct one final machine as follows. This 
machine will take as input the representation of a program and 
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try to determine if that program would halt when given a 
representation of itself as input. This is done by copying the 
program and using the copy as input. This machine is presented 
below. We will just call this M(program). 

Figure 12.12 

Now suppose that we run M with a representation of M 
as the input. We can think of this as calling M(M). If the program 
M should halt given M as the input, then M(M) should run forever. 
However, this is exactly what we did. We passed M into M, and if it 
runs forever, then M(M) should halt. This leads to a contradiction. 
We have a paradox where M should both run forever and halt. Since 
we arrived at a contradiction and all these algorithms (loopIfHalts 
and M) are derived from our hypothetical checkIfHalts program, 
these facts indicate that such a program cannot exist. This means 
that the halting problem is undecidable. This proof was discovered 
by Alan Turing and published in 1936. It provided some of the first 
evidence of problems that were literally unsolvable. Now that’s a 
hard problem! 
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Summary 

In this chapter we have explored many incredible results in 
computer science theory. We have explored what it means for a 
problem to be hard in a practical sense and in a theoretical sense. 
We also discussed the existence of impossible problems. These 
problems cannot be solved by any computer no matter how 
powerful or how much time they are given. Scientists are still 
working to understand whether P = NP or not. If this result turns out 
to be true, there may exist an efficient algorithm for solving many 
of our most difficult problems exactly. For now, though, no such 
algorithm is known. Computer scientists and humans in general 
never give up in the face of hard problems. We also explored the use 
of heuristics to help find suitable solutions when an exact solution 
might not be practical to find. These results in computer science 
theory will help you understand what makes problems hard and 
what to do about them. 

 

Exercises 

1. Do some research on NP-complete problems. Find 
an NP-complete problem that was not discussed in this 
chapter. What is the current best time complexity for the 
problem? 

2
. For your problem in exercise 1, how efficient in 

terms of runtime complexity are the current best 
approximation algorithms for the problem? What 
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heuristics are used in the approximate solution? 
3
. In your language of choice, implement the Best Fit 

algorithm for bin packing. Feel free to use a Linear Search 
rather than a balanced search tree. Use an interactive 
loop to allow the user to enter different sizes for each of 
the items and apply the greedy algorithm. Compare your 
implementation results to examples from this chapter. 

4
. Try the following thought exercise. Consider the 

possibility that an algorithm is discovered that solves NP-
complete problems in polynomial time. Write a paragraph 
describing how our society might change with the advent 
of this algorithm. Be sure to address some specific 
algorithms that could be made efficient and how solving 
them quickly might impact society. 
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