
The Joy of Cryptography

Mike Rosulek 〈mike@joyofcryptography.com〉
School of Electrical Engineering & Computer Science

Oregon State University, Corvallis, Oregon, USA

Draft of January 3, 2021

> Preface

The Joy of Cryptography is an undergraduate textbook in cryptography. This book evolved
from lecture notes I developed for the cs427 course at Oregon State University (and before
that, cs473 at the University of Montana).

Yes, I know that the title is ridiculous. All of the serious titles were already taken. I
hope you understand that actual joy is not guaranteed.

What Is This Book About?

This book is about the fundamentals of provable security.

I Security: Cryptography is about controlling access to information. We break apart
the nebulous concept of “security” into more speci�c goals: con�dentiality, authen-
ticity, integrity.

I Provable: We can formally de�ne what it means to be secure, and then mathemat-
ically prove claims about security. One prominent theme in the book is the logic of
composing building blocks together in secure ways.

I Fundamentals: This is an introductory book on the subject that covers the basics.
After completing this course, you will have a solid theoretical foundation that you
can apply to most real-world situations. You will also be equipped to study more
advanced topics in cryptography.

This book is not a handbook telling you which cryptographic algorithm to use in every
situation, nor a guide for securely implementing production-ready cryptographic libraries.
We do not discuss speci�c cryptographic software (e.g., PGP, Tor, Signal, TrueCrypt) or
cryptocurrencies like Bitcoin. You won’t learn how to become a hacker by reading this
book.

Who Is This Book For?

This book is for anyone who might need to secure information with cryptography, and
who is curious about what makes some things “secure” (and what makes other things
insecure). I don’t imagine that most readers of this book will develop their own novel
cryptography (e.g., designing new block ciphers), but they will be far more likely to use
and combine cryptographic building blocks — thus our focus on the logic of composition.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021

What Background Is Needed To Understand This Book?

You will get the most out of this book if you have a solid foundation in standard under-
graduate computer science material:

I Discrete mathematics (of the kind you typically �nd in year 2 or 3 of an under-
graduate CS program) is required background. The book assumes that you are
familiar with basic modular arithmetic, discrete probabilities, simple combinatorics,
and especially proof techniques. Chapter 0 contains a brief review of some of these
topics.

I Algorithms & data structures background is highly recommended, and theory of
computation (automata, formal languages & computability) is also recommended.
We deal with computations and algorithms at a high level of abstraction, and with
mathematical rigor. Prior exposure to this style of thinking will be helpful.

Why Is Cryptography A Di�icult Subject?

It’s all the math, right? Cryptography has a reputation of being a di�cult subject be-
cause of the amount of di�cult math, but I think this assessment misses the mark. A former
victim, I mean student, summed it up bluntly when he shared in class (paraphrased):

Some other students were thinking of taking your course but were worried that
it is really math-heavy. I wouldn’t say that this course is a lot of math exactly.
It’s somehow even worse!

Thanks, I think.
Anyway, many corners of cryptography use math that most CS undergrads would �nd

quite advanced (advanced factoring algorithms, elliptic curves, isogenies, even algebraic
geometry), but these aren’t the focus of this book. Our focus is instead on the logic of
composing di�erent building blocks together in provably secure ways. Yes, you will prob-
ably learn some new math in this book — enough to understand RSA, for example. And
yes, there are plenty of “proofs.” But I honestly believe you’ll be �ne if you did well in
a standard discrete math course. I always tell my cs427 students that I’m not expecting
them to love math, proofs, and theory — I only ask them to choose not to be scared of it.

If not math, then what? In an algorithms course, I could introduce and explain con-
cepts with concrete examples — here’s what happens step-by-step when I run mergesort
on this particular array, here’s what happens when I run Dijkstra’s algorithm on this par-
ticular graph, here are 42 examples of a spanning tree. You could study these concrete
examples, or even make your own, to develop your understanding of the general case.

Cryptography is di�erent because our main concerns are higher up the ladder of
abstraction than most students are comfortable with.1 Yes, I can illustrate what happens

1Of course, abstraction is the heart of math. I may be making a false distinction by saying “it’s not the
math, it’s the abstraction.” But I think there’s something to the distinction between a CS major’s typical
math-aversion and what is really challenging about cryptography.

iii

Draft: January 3, 2021

step-by-step when you run a cryptographic algorithm on a particular input. This might
help you understand what the algorithm does, but it can never illustrate why the al-
gorithm is secure. This question of “why” is the primary focus of this book.

I Security is a global property about the behavior of a system across all possible
inputs. You can’t demonstrate security by example, and there’s nothing to see in a
particular execution of an algorithm. Security is about a higher level of abstraction.

I Most security de�nitions in this book are essentially: “the thing is secure if its outputs
look like random junk.” If I give an example that is concrete enough to show actual
inputs and outputs, and if things are working as they should, then all the outputs
will just look like meaningless garbage. Unfortunately, no one ever learned very
much by staring at meaningless garbage.

Systems are insecure when they fail to adequately look like random junk. Occasionally
they fail so spectacularly that you can actually see it by looking at concrete input and
output values (as in the case of the ECB penguin). But more often, the reason for insecurity
is far from obvious. For example, suppose an encryption scheme was insecure because the
xor of the �rst two output blocks is the same as the xor of the third and fourth output
blocks. I’m not convinced that it would be helpful to show concrete example values with
this property. What’s more, sometimes the reason for insecurity only “jumps o� the page”
on speci�c, non-obvious, choices of inputs.

If you want to be equipped to answer questions like “why is this thing secure but this
other very similar thing is not?”, then you must develop an understanding at this higher
level of abstraction. You’ll have to directly come to terms with abstract ideas like “this
algorithm’s outputs look like random junk, under these circumstances,” and the conse-
quences of these kinds of ideas. It’s hard to arrive at understanding without the usual
scafolding of concrete examples (seeing algorithms executed on speci�c inputs), but this
book is my best e�ort at making the path as smooth as I know how.

Known Shortcomings

I I’ve used this book as a primary course reference for several years now, but I still
consider it to be a draft. Of course I try my best to ensure the accuracy of the content,
but there are sure to be plenty of bugs, ranging in their severity. Caveat emptor!

I welcome feedback of all kinds — not just on errors and typos but also on the se-
lection, organization, and presentation of the material.

I I usually cover essentially this entire book during our 10-week quarters. There is
probably not enough material to sustain an entire 16-week semester, though. I al-
ways �nd it easier to polish existing material than to add completely new material.
Someday I hope to add more chapters (see the roadmap below), but for now you’ll
have to get by without some important and interesting topics.

I There is no solutions manual, and I currently have no plans to make one.

iv

Draft: January 3, 2021

Code-Based Games Philosophy

The security de�nitions and proofs in these notes are presented in a style that is known
to the research community as code-based games. I’ve chosen this style because I think it
o�ers signi�cant pedagogical bene�ts:

I Every security de�nition can be expressed in the same style, as the indistinguisha-
bility of two games. In my terminology, the games are libraries with a common
interface/API but di�erent internal implementations. An adversary is any calling
program on that interface. These libraries use a concrete pseudocode that reduces
ambiguity about an adversary’s capabilities. For instance, the adversary controls
arguments to subroutines that it calls and sees only the return value. The adversary
cannot see any variables that are privately scoped to the library.

I A consistent framework for de�nitions leads to a consistent process for proving and
breaking security — the two fundamental activities in cryptography.

In these notes, breaking a construction always corresponds to writing a program that
expects a particular interface and behaves as di�erently as possible in the presence
of two particular implementations of the interface.

Proving security nearly always refers to showing a sequence of libraries (called hy-
brids), each of which is indistinguishable from the previous one. Each of these hy-
brids is written in concrete pseudocode. By identifying what security property we
wish to prove, we identify what the endpoints of this sequence must be. The steps
that connect adjacent hybrids are stated in terms of syntactic rewriting rules for
pseudocode, including down-to-earth steps like factoring out and inlining subrou-
tines, changing the value of unused variables, and so on.

I Cryptography is full of conditional statements of security: “if A is a secure thinga-
majig, then B is a secure doohickey.” A conventional proof of such a statement would
address the contrapositive: “given an adversary that attacks the doohickey-security
of B, I can construct an attack on the thingamajig-security of A.”

In my experience, students struggle to �nd the right way to transform an abstract,
hypothetical B-attacking adversary into a successful A-attacking adversary. By
de�ning security in terms of games/libraries, we can avoid this abstract challenge,
and indeed avoid the context switch into the contrapositive altogether. In these
notes, the thingamajig-security of A gives the student a new constructive rewriting
rule that can be placed in his/her toolbox and used to bridge hybrids when proving
the doohickey-security of B.

Code-based games were �rst proposed by Shoup2 and later expanded by Bellare & Rog-
away.3 These notes adopt a simpli�ed and uni�ed style of games, since the goal is not to
encompass every possible security de�nition but only the fundamental ones. The most
signi�cant di�erence in style is that the games in these notes have no explicit Initialize

2Victor Shoup: Sequences of Games: A Tool for Taming Complexity in Security Proofs. ia.cr/2004/332
3Mihir Bellare & Philip Rogaway: Code-Based Game-Playing Proofs and the Security of Triple Encryption.

ia.cr/2004/331

v

http://ia.cr/2004/332
http://ia.cr/2004/331

Draft: January 3, 2021

or Finalize step. As a result, all security de�nitions are expressed as indistinguishability
of two games/libraries, even security de�nitions that are fundamentally about unforge-
ability. Yet, we can still reason about unforgeability properties within this framework. For
instance, to say that no adversary can forge a MAC, it su�ces to say that no adversary can
distinguish a MAC-veri�cation subroutine from a subroutine that always returns false.
An index of security de�nitions has been provided at the end of the book.

One instance where the approach falls short, however, is in de�ning collision resis-
tance. I have not been able to de�ne it in this framework in a way that is both easy to use
and easy to interpret (and perhaps I achieved neither in the end). See Chapter 11 for my
best attempt.

Other Boring Stu�

Copyright

This work is copyright by Mike Rosulek and made available under the Creative Commons
BY-NC-SA 4.0 license. Under this license, you are free to:

Share: copy and redistribute the material in any medium or format.

Adapt: remix, transform, and build upon the material.

The licensor cannot revoke these freedoms as long as you follow the following license
terms:

Attribution: You must give appropriate credit, provide a link to the license, and in-
dicate if changes were made. You may do so in any reasonable man-
ner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial: You may not use the material for commercial purposes.

ShareAlike: If you remix, transform, or build upon the material, you must dis-
tribute your contributions under the same license as the original.

You may not apply legal terms or technological measures that legally restrict others from
doing anything the license permits.

About the cover

The cover design consists of assorted shell illustrations from Bibliothèque conchyliologique,
published in 1846. The images are no longer under copyright, and were obtained from the
Biodiversity Heritage Library (h�p://biodiversitylibrary.org/bibliography/11590).

Why shells? Just like a properly deployed cryptographic primitive, a properly de-
ployed shell is the most robust line of defense for a mollusk. To an uniformed observer, a
shell is just a shell. However, there are many kinds of shells, each of which provides pro-
tection against a di�erent kind of attack. The same is true of the cryptographic building
blocks we study in this course.

vi

http://biodiversitylibrary.org/bibliography/11590

Draft: January 3, 2021

Acknowledgements

Some �nancial support for writing this book has been kindly provided by the National
Science Foundation (awards #1149647, #1617197) and the Oregon State University Open
Textbook Initiative.

Thanks to Brent Carmer & Leo Reyzin for many thoughtful suggestions and comments
about the material. I am also grateful for the many students in cs427 who have reported
countless bugs.

Changelog

2021-01-03 Chapter 2 (provable security basics) is now much more explicit about how security de�ni-
tions are a “template” that we “�ll in” with speci�c algorithms (e.g., Enc, Dec). Chapter 5
(PRGs) now compares/contrasts two approaches for extending the stretch of a PRG — one
secure and one insecure. This chapter also introduces a “socratic dialogue” approach to
thinking about security proofs (previously there was only one such dialogue in Chapter
7). Hints to the exercises are now upside-down for extra security!

2020-02-05 Overhaul of Chapter 2 (provable security fundamentals). The structure is arguably more
coherent now. The total number of examples is increased. I now also include both a
successful security proof and an example of where an attempted security proof goes wrong
(since the scheme is actually insecure).

2020-01-09 High-frequency winter revisions are continuing. This update focuses entirely on Chapter
13 (RSA): Many many more examples are included, in Sage! Discussion of CRT is (hope-
fully) clearer. Digital signatures content is �nally there. There’s a new discussion of how
to actually compute modular exponentiation on huge numbers, and a couple fun new ex-
ercises.

2020-01-05 Revising in preparation for teaching CS427 during Winter term.

I Chapter 0: More examples. Expanded treatment of modular arithmetic. Tips & tricks
for modular arithmetic and probabilities.

I Chapter 1: Moderate reorganization of “things that cryptographers blissfully ig-
nore.”

I Chapters 12–15: Moved AEAD chapter into position as chapter 12. Public-key stu�
is now chapters 13–15.

I Chapter 13 (RSA): More (but not enough) examples of multiplicative inverses. New
discussion of algorithmic aspects of exponentiation mod N . This chapter will even-
tually focus on signatures exclusively, but we’re not year that. Expect updates over
the next few months.

2019-03-21 Chapter 11 (hash functions) signi�cant revisions: no more impenetrable security de�nition
for collision-resistance; explicit treatment of salts; better examples for Merkle-Damgård
and length-extension. New draft Chapter 15 on AEAD (after next revision will be inserted
after Chapter 11).

vii

Draft: January 3, 2021

2019-01-07 Extensive revisions; only the major ones listed here. Lots of homework problems
added/updated throughout. I tried to revise the entire book in time for my Winter 2019
o�ering, but ran out of time.

I Added a changelog!

I Chapter 1: Kerckho�s’ Principle now discussed here (previously only mentioned for
the �rst time in Ch 2).

I Chapter 2: Now the concepts are introduced in context of speci�c one-time security
de�nition, not in the abstract. More examples of interchangeable libraries.

I Chapter 3: Polynomial interpolation now shown explicitly with LaGrange polyno-
mials (rather than Vandermonde matrices). Full interpolation example worked out.

I Chapter 4: Better organization. Real-world contextual examples of extreme (large
& small) 2n values. Full proof of bad-event lemma. Generalized avoidance-sampling
libraries.

I Chapter 5: Motivate PRGs via pseudo-OTP idea. Better illustration of PRG function,
and conceptual pitfalls. How NOT to build a PRG. New section on stream cipher &
symmetric ratchet.

I Chapter 6: Combined PRF & PRP chapters. Motivate PRFs via m 7→ (r , F (k, r) ⊕m)
construction. Better discussion of eager vs. lazy sampling of exponentially large
table. How NOT to build a PRF. New section on constructing PRG from PRF, and
more clarity on security proofs with variable number of hybrids. Better illustrations
& formal pseudocode for Feistel constructions.

I Chapter 7: Other ways to avoid insecurity of deterministic encryption (stateful &
nonce-based). Ridiculous Socratic dialog on the security of the PRF-based encryp-
tion scheme.

I Chapter 8: Compare & contrast CTR & CBC modes.

Road Map

The following topics are shamefully missing from the book, but are planned or being con-
sidered:

1. authenticated key agreement, secure messaging / ratcheting (high priority)

2. random oracle & ideal cipher models (medium priority)

3. elliptic curves, post-quantum crypto (but I would need to learn them �rst)

4. DH-based socialist millionaires, PSI, PAKE, simple PIR, basic MPC concepts (low
priority)

viii

Contents

0 Review of Concepts & Notation 1
0.1 Logs & Exponents . 1
0.2 Modular Arithmetic . 1
0.3 Strings . 4
0.4 Functions . 5
0.5 Probability . 5
0.6 Notation in Pseudocode . 7
0.7 Asymptotics (Big-O) . 8

1 One-Time Pad & Kerckho�s’ Principle 10
1.1 What Is [Not] Cryptography? . 10
1.2 Speci�cs of One-Time Pad . 13

2 The Basics of Provable Security 21
2.1 How to Write a Security De�nition . 21
2.2 Formalisms for Security De�nitions . 25
2.3 How to Demonstrate Insecurity with Attacks 30
2.4 How to Prove Security with The Hybrid Technique 33
2.5 How to Compare/Contrast Security De�nitions 38

3 Secret Sharing 47
3.1 De�nitions . 47
3.2 A Simple 2-out-of-2 Scheme . 51
3.3 Polynomial Interpolation . 54
3.4 Shamir Secret Sharing . 58
3.5? Visual Secret Sharing . 62

4 Basing Cryptography on Intractable Computations 67
4.1 What Quali�es as a “Computationally Infeasible” Attack? 67
4.2 What Quali�es as a “Negligible” Success Probability? 70
4.3 Indistinguishability . 72
4.4 Birthday Probabilities & Sampling With/out Replacement 76

5 Pseudorandom Generators 85
5.1 De�nitions . 85
5.2 Pseudorandom Generators in Practice . 87
5.3 Application: Shorter Keys in One-Time-Secret Encryption 90
5.4 Extending the Stretch of a PRG . 92
5.5? Applications: Stream Cipher & Symmetric Ratchet 98

6 Pseudorandom Functions & Block Ciphers 106
6.1 De�nition . 107
6.2 PRFs vs PRGs; Variable-Hybrid Proofs . 110
6.3 Block Ciphers (Pseudorandom Permutations) 120
6.4 Relating PRFs and Block Ciphers . 121

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021

6.5 PRFs and Block Ciphers in Practice . 124
6.6? Strong Pseudorandom Permutations . 125

7 Security Against Chosen Plaintext Attacks 130
7.1 Limits of Deterministic Encryption . 130
7.2 Pseudorandom Ciphertexts . 133
7.3 CPA-Secure Encryption Based On PRFs . 135

8 Block Cipher Modes of Operation 144
8.1 A Tour of Common Modes . 144
8.2 CPA Security and Variable-Length Plaintexts 147
8.3 Security of OFB Mode . 149
8.4 Padding & Ciphertext Stealing . 152

9 Chosen Ciphertext Attacks 162
9.1 Padding Oracle Attacks . 162
9.2 What Went Wrong? . 165
9.3 De�ning CCA Security . 168
9.4? A Simple CCA-Secure Scheme . 171

10 Message Authentication Codes 182
10.1 De�nition . 182
10.2? A PRF is a MAC . 186
10.3 MACs for Long Messages . 191
10.4 Encrypt-Then-MAC . 194

11 Hash Functions 201
11.1 Security Properties for Hash Functions . 201
11.2 Merkle-Damgård Construction . 205
11.3 Hash Functions vs. MACs: Length-Extension Attacks 208

12 Authenticated Encryption & AEAD 214
12.1 De�nitions . 215
12.2 Achieving AE/AEAD . 217
12.3 Carter-Wegman MACs . 218
12.4 Galois Counter Mode for AEAD . 225

13 RSA & Digital Signatures 227
13.1 “Dividing” Mod n . 227
13.2 The RSA Function . 232
13.3 Digital Signatures . 237
13.4 Chinese Remainder Theorem . 240
13.5 The Hardness of Factoring N . 244

14 Di�e-Hellman Key Agreement 254
14.1 Cyclic Groups . 254
14.2 Di�e-Hellman Key Agreement . 255

x

Draft: January 3, 2021

14.3 Decisional Di�e-Hellman Problem . 256

15 Public-Key Encryption 260
15.1 Security De�nitions . 260
15.2 One-Time Security Implies Many-Time Security 261
15.3 ElGamal Encryption . 264
15.4 Hybrid Encryption . 267

Index of Security De�nitions 271

xi

0 Review of Concepts & Notation

The material in this section is meant as a review. Despite that, many students report
that they �nd this review useful for the rest of the book.

0.1 Logs & Exponents

You probably learned (and then forgot) these identities in middle school or high school:

(xa)(xb) = xa+b

(xa)b = xab

logx (ab) = logx a + logx b
a logx b = logx (b

a)

Well, it’s time to get reacquainted with them again.
In particular, never ever write (xa)(xb) = xab . If you write this, your cryptography

instructor will realize that life is too short, immediately resign from teaching, and join a
traveling circus. But not before changing your grade in the course to a zero.

0.2 Modular Arithmetic

We write the set of integers as:

Z
def
= {. . . ,−2,−1, 0, 1, 2, . . .},

and the set of natural numbers (nonnegative integers) as:

N
def
= {0, 1, 2, . . .}.

Note that 0 is considered a natural number.

Definition 0.1 For x ,n ∈ Z, we say that n divides x (or x is a multiple of n), and write n | x , if there exists
an integer k such that x = kn.

Remember that the de�nitions apply to both positive and negative numbers (and to
zero). We generally only care about this de�nition in the case where n is positive, but it is
common to consider both positive and negative values of x .

Example 7 divides 84 because we can write 84 = 12 · 7.
7 divides 0 because we can write 0 = 0 · 7.
7 divides −77 because we can write −77 = (−11) · 7.
−7 divides 42 because we can write 42 = (−6) · (−7).
1 divides every integer (so does −1). The only integer that 0 divides is itself.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

Definition 0.2

(% operator)

Let n be a positive integer, and let a be any integer. The expression a % n (usually read as “a
mod n”) represents the remainder after dividing a by n. More formally, a % n is the unique
r ∈ {0, . . . ,n − 1} such that n | (a − r).1

Pay special attention to the fact that a %n is always a nonnegative number, even if a is
negative. A good way to remember how this works is:

a is (a % n) more than a multiple of n.

Example 21 % 7 = 0 because 21 = 3 · 7 + 0.
20 % 7 = 6 because 20 = 2 · 7 + 6.
−20 % 7 = 1 because −20 = (−3) · 7 + 1. (−20 is one more than a multiple of 7.)
−1 % 7 = 6 because −1 = (−1) · 7 + 6.

Unfortunately, some programming languages de�ne % for negative numbers as (−a)%
n = −(a % n), so they would de�ne −20 % 7 to be −(20 % 7) = −6. This is madness, and
it’s about time we stood up to these programming language designers and smashed them
over the head with some mathematical truth! For now, if you are using some programming
environment to play around with the concepts in the class, be sure to check whether it
de�nes % in the correct way.

Definition 0.3

(Zn)

For positive n, we write Zn
def
= {0, . . . ,n − 1} to denote the set of integers modulo n. These

are the possible remainders one obtains by dividing by n.2

Definition 0.4

(≡n)

For positive n, we say that integers a and b are congruent modulo n, and write a ≡n b, if
n | (a − b). An alternative de�nition is that a ≡n b if and only if a % n = b % n.

You’ll be in a better position to succeed in this class if you can understand the (subtle)
distinction between a ≡n b and a = b % n:

a ≡n b: In this expression, a and b can be integers of any size, and any sign. The left
and right side have a certain relationship modulo n.

a = b % n: This expression says that two integers are equal. The “=” rather than “≡” is
your clue that the expression refers to equality over the integers. “b % n” on
the right-hand side is an operation performed on two integers that returns an
integer result. The result of b % n is an integer in the range {0, . . . ,n − 1}.

Example “99 ≡10 19” is true. Applying the de�nition, you can see that 10 divides 99 − 19.
On the other hand, “99 = 19 % 10” is false. The right-hand side evaluates to the integer 9,

but 99 and 9 are di�erent integers.
1The fact that only one value of r has this property is a standard fact proven in most introductory courses

on discrete math.
2Mathematicians may recoil at this de�nition in two ways: (1) the fact that we call it Zn and not Z/(nZ);

and (2) the fact that we say that this set contains integers rather than congruence classes of integers. If you
appreciate the distinction about congruence classes, then you will easily be able to mentally translate from
the style in this book; and if you don’t appreciate the distinction, there should not be any case where it makes
a di�erence.

2

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

In short, expressions like a ≡n b make sense for any a,b (including negative!), but
expressions like a = b % n make sense only if a ∈ Zn .

Most other textbooks will use notation “a ≡ b (mod n)” instead of “a ≡n b.” I dislike
this notation because “(mod n)” is easily mistaken for an operation or action that only
a�ects the right-hand side, when in reality it is like an adverb that modi�es the entire
expression a ≡ b. Even though ≡n is a bit weird, I think the weirdness is worth it.

If d | x and d | y, then d is a common divisor of x and y. The largest possible such d
is called the greatest common divisor (GCD), denoted gcd(x ,y). If gcd(x ,y) = 1, then
we say that x and y are relatively prime. The oldest “algorithm” is the recursive process
that Euclid described for computing GCDs (ca. 300 bce):

gcd(x ,y): // Euclid’s algorithm
if y = 0 then return x
else return gcd(y,x % y)

Tips & Tricks

You may often be faced with some complicated expression and asked to �nd the value of
that expression mod n. This usually means: �nd the unique value in Zn that is congruent
to the result. The straightforward way to do this is to �rst compute the result over the
integers, and then reduce the answer mod n (i.e., with the % n operator).

While this approach gives the correct answer (and is a good anchor for your under-
standing), it’s usually advisable to simplify intermediate values mod n. Doing so will
result in the same answer, but will usually be easier or faster to compute:

Example We can evaluate the expression 6 · 7 · 8 · 9 · 10 % 11 without ever calculating that product over
the integers, by using the following reasoning:

6 · 7 · 8 · 9 · 10 = (42) · 8 · 9 · 10
≡11 9 · 8 · 9 · 10
= (72) · 9 · 10
≡11 6 · 9 · 10
= (54) · 10
≡11 10 · 10
= 100
≡11 1

In the steps that only work mod 11, we write “≡11”. We can write “=” when the step holds over
the integers, although it wouldn’t be wrong to write “≡11” in those cases too. If two expressions
represent the same integer, then they surely represent values that are congruent mod 11.

My advice is to simplify intermediate values modn, but “simplify” doesn’t always mean
“reduce mod n with the % n operation.” Sometimes an expression can by “simpli�ed” by
substituting a value with something congruent, but not in the range {0, . . . ,n − 1}:

3

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

Example I can compute 7500 % 8 in my head, by noticing that 7 ≡8 −1 and simplifying thusly:

7500 ≡8 (−1)500 = 1.

Similarly, I can compute 892%99 in my head, although I have not memorized the integer
892. All I need to do is notice that 89 ≡99 −10 and compute this way:

892 ≡99 (−10)2 = 100 ≡99 1

You can compute either of these examples the “hard way” to verify that these shortcuts lead
to the correct answer.

Since addition, subtraction, and multiplication are de�ned over the integers (i.e.,
adding/subtracting/multiplying integers always results in an integer), these kinds of tricks
can be helpful.

On the other hand, dividing integers doesn’t always result in an integer. Does it make
sense to use division when working mod n, where the result always has to lie in Zn? We
will answer this question later in the book.

0.3 Strings

We write {0, 1}n to denote the set of n-bit binary strings, and {0, 1}∗ to denote the set
of all (�nite-length) binary strings. When x is a string of bits, we write |x | to denote the
length (in bits) of that string, and we write x to denote the result of �ipping every bit in x .
When it’s clear from context that we’re talking about strings instead of numbers, we write
0n and 1n to denote strings of n zeroes and n ones, respectively (rather than the result of
raising the integers 0 or 1 to the n power). As you might have noticed, I also try to use a
di�erent font and color for characters (including bits, anything that could be used to build
a string through concatenation) vs. integers.

Definition 0.5

(⊕, xor)

When x and y are strings of the same length, we write x ⊕y to denote the bitwise exclusive-or
(xor) of the two strings. The expression x ⊕ y is generally not de�ned when the strings are
di�erent lengths, but in rare occasions it is useful to consider the shorter string being padded
with 0s. When that’s the case, we must have an explicit convention about whether the shorter
string is padded with leading 0s or trailing 0s.

For example, 0011 ⊕ 0101 = 0110. The following facts about the xor operation are
frequently useful:

x ⊕ x = 000· · · xor’ing a string with itself results in zeroes.
x ⊕ 000· · · = x xor’ing with zeroes has no e�ect.
x ⊕ 111· · · = x xor’ing with ones �ips every bit.

x ⊕ y = y ⊕ x xor is symmetric.
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) xor is associative.

See if you can use these properties to derive the very useful fact below:

a = b ⊕ c ⇐⇒ b = a ⊕ c ⇐⇒ c = a ⊕ b .

There are a few ways to think about xor that may help you in this class:

4

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

I Bit-�ipping: Note that xor’ing a bit with 0 has no e�ect, while xor’ing with 1 �ips
that bit. You can think of x ⊕ y as: “starting with x , �ip the bits at all the positions
where y has a 1.” So if y is all 1’s, then x ⊕ y gives the bitwise-complement of x . If
y = 1010· · · then x ⊕ y means “(the result of) �ipping every other bit in x .”

Many concepts in this course can be understood in terms of bit-�ipping. For exam-
ple, we might ask “what happens when I �ip the �rst bit of x and send it into the
algorithm?” This kind of question could also be phrased as “what happens when I
send x ⊕ 1000· · · into the algorithm?” Usually there is nothing special about �ip-
ping just the �rst bit of a string, so it will often be quite reasonable to generalize the
question as “what happens when I send x ⊕ y into the algorithm, for an arbitrary
(not-all-zeroes) string y?”

I Addition mod-2: xor is just addition mod 2 in every bit. This way of thinking
about xor helps to explain why “algebraic” things like (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) are
true. They are true for addition, so they are true for xor.

This also might help you remember why x ⊕ x is all zeroes. If instead of xor we
used addition, we would surely write x + x = 2x . Since 2 ≡2 0, we get that 2x is
congruent to 0x = 0.

Definition 0.6

(‖, concatenation)

We write x ‖y to denote the result of concatenating x and y.

0.4 Functions

Let X and Y be �nite sets. A function f : X → Y is:

injective (1-to-1) if it maps distinct inputs to distinct outputs. Formally: x , x ′ ⇒
f (x) , f (x ′). If there is an injective function from X to Y , then we must have
|Y | > |X |.

surjective (onto) if every element in Y is a possible output of f . Formally: for all y ∈ Y
there exists an x ∈ X with f (x) = y. If there is a surjective function from X to
Y , then we must have |Y | 6 |X |.

bijective (1-to-1 correspondence) if f is both injective and surjective. If there is a bijec-
tive function from X to Y , then we must have |X | = |Y |.

0.5 Probability

Definition 0.7

(Distribution)

A (discrete) probability distribution over a set X of outcomes is usually written as a
function “Pr” that associates each outcome x ∈ X with a probability Pr[x]. We often say that
the distribution assigns probability Pr[x] to outcome x .

For each outcome x ∈ X , the probability distribution must satisfy the condition 0 6
Pr[x] 6 1. Additionally, the sum of all probabilities

∑
x ∈X Pr[x] must equal 1.

Definition 0.8

(Uniform)

A special distribution is the uniform distribution over a �nite set X , in which every x ∈ X
is assigned probability Pr[x] = 1/|X |.

5

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

We also extend the notation Pr to events, which are collections of outcomes. If you
want to be formal, an event A is any subset of the possible outcomes, and its probability
is de�ned to be Pr[A] =

∑
x ∈A Pr[x]. We always simplify the notation slightly, so instead

of writing Pr[{x | x satis�es some condition}], we write Pr[condition].

Example A 6-sided die has faces numbered {1, 2, . . . , 6}. Tossing the die (at least for a mathemati-
cian) induces a uniform distribution over the choice of face. Then Pr[3 is rolled] = 1/6, and
Pr[an odd number is rolled] = 1/2 and Pr[a prime is rolled] = 1/2.

Tips & Tricks

Knowing one of the probabilities Pr[A] and Pr[¬A] (which is “the probability thatA doesn’t
happen”) tells you exactly what the other probability is, via the relationship

Pr[A] = 1 − Pr[¬A].

This is one of the most basic facts about probability, but it can be surprisingly useful since
one of Pr[A] and Pr[¬A] is often much easier to calculate than the other. If you get stuck
trying to come up with an expression for Pr[A], try working out an expression for Pr[¬A]
instead.

Example I roll a six-sided die, six times. What is the probability that there is some repeated value?
Let’s think about all the ways of getting a repeated value. Well, two of the rolls could be 1, or
three of rolls could be 1, or all of them could be 1, two of them could be 1 and the rest could
be 2, etc. Oh no, am I double-counting repeated 2s and repeated 1s? Uhh. . .

An easier way to attack the problem is to realize that the probability we care about is
actually 1−Pr[all 6 rolls are distinct]. This complementary event (all 6 rolls distinct) happens
exactly when the sequence of dice rolls spell out a permutation of {1, . . . , 6}. There are 6! =
720 such permutations, out of 66 = 46656 total possible outcomes. Hence, the answer to the
question is

1 −
6!
66
= 1 −

720
46656

=
45936
46656

≈ 0.9846

Another trick is one I like to call setting breakpoints on the universe. Imagine stop-
ping the universe at a point where some random choices have happened, and others have
not yet happened. This is best illustrated by example:

Example A classic question asks: when rolling two 6-sided dice what is the probability that the dice
match? Here is a standard (and totally correct way) to answer the question:

When rolling two 6-sided dice, there are 62 = 36 total outcomes (a pair of num-
bers), so each has probability 1/36 under a uniform distribution. There are 6
outcomes that make the dice match: both dice 1, both dice 2, both dice 3, and so
on. Therefore, the probability of rolling matching dice is 6/36 = 1/6.

A di�erent way to arrive at the answer goes like this:

6

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

Imagine I roll the dice one after another, and I pause the universe (set a break-
point) after rolling the �rst die but before rolling the second one. The universe
has already decided the result of the �rst die, so let’s call that value d . The dice
will match only if the second roll comes up d . Rolling d on the second die (indeed,
rolling any particular value) happens with probability 1/6.

This technique of setting breakpoints is simple but powerful and frequently useful.
Some other closely related tricks are: (1) postponing a random choice until the last possible
moment, just before its result is used for the �rst time, and (2) switching the relative order
of independent random choices.

Precise Terminology

It is tempting in this course to say things like “x is a random string.” But a statement like
this is sloppy on several accounts.

First, is 42 a random number? Is “heads” a random coin? What is even being asked by
these questions? Being “random” is not a property of an outcome (like a number or a side
of a coin) but a property of the process that generates an outcome.3 Instead of saying “x is
a random string,” it’s much more precise to say “x was chosen randomly.”

Second, usually when we use the word “random,” we don’t mean any old probability
distribution. We usually mean to refer to the uniform distribution. Instead of saying “x
was chosen randomly,” it’s much more precise to say “x was chosen uniformly” (assuming
that really is what you mean).

Every cryptographer I know (yes, even your dear author) says things like “x is a ran-
dom string” all the time to mean “x was chosen uniformly [from some set of strings].”
Usually the meaning is clear from context, at least to the other cryptographers in the
room. But all of us could bene�t by having better habits about this sloppy language. Stu-
dents especially will bene�t by internalizing the fact that randomness is a property of
the process, not of the individual outcome.

0.6 Notation in Pseudocode

We’ll often describe algorithms/processes using pseudocode. In doing so, we will use sev-
eral di�erent operators whose meanings might be easily confused:

← WhenD is a probability distribution, we write “x ← D” to mean “sample x accord-
ing to the distribution D.”

IfA is an algorithm that takes input and also makes some internal random choices,
then it is natural to think of its output A(y) as a distribution — possibly a di�erent
distribution for each input y. Then we write “x ← A(y)” to mean the natural thing:
“run A on input y and assign the output to x .”

3There is something called Kolmogorov complexity that can actually give coherent meaning to statements
like “x is a random string.” But Kolmogorov complexity has no relevance to this book. The statement “x is
a random string” remains meaningless with respect to the usual probability-distribution sense of the word
“random.”

7

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

We overload the “←” notation slightly, writing “x ← X ” when X is a �nite set to
mean that x is sampled from the uniform distribution over X .

:= We write x := y for assignments to variables: “take the value of expression y and
assign it to variable x .”

?
= We write comparisons as ?

= (analogous to “==” in your favorite programming lan-
guage). So x ?

= y doesn’t modify x (ory), but rather it is an expression which returns
true if x and y are equal.

You will often see this notation in the conditional part of an if-statement, but also
in return statements as well. The following two snippets are equivalent:

return x
?
= y ⇔

if x ?
= y:

return true

else:
return false

In a similar way, we write x
?
∈ S as an expression that evaluates to true if x is in the

set S .

Subroutine conventions

We’ll use mathematical notation to de�ne the types of subroutine arguments:

foo (x ∈ {0, 1}∗):
· · ·

means “void foo(string x) { ... }′′

0.7 Asymptotics (Big-O)

Let f : N→ N be a function. We characterize the asymptotic growth of f in the following
ways:

f (n) is O(д(n))
def
⇔ lim

n→∞

f (n)

д(n)
< ∞

⇔ ∃c > 0 : for all but �nitely many n : f (n) < c · д(n)

f (n) is Ω(д(n))
def
⇔ lim

n→∞

f (n)

д(n)
> 0

⇔ ∃c > 0 : for all but �nitely many n : f (n) > c · д(n)

f (n) is Θ(д(n))
def
⇔ f (n) is O(д(n)) and f (n) is Ω(д(n))

⇔ 0 < lim
n→∞

f (n)

д(n)
< ∞

⇔ ∃c1, c2 > 0 : for all but �nitely many n :
c1 · д(n) < f (n) < c2 · д(n)

8

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

Exercises

0.1. Rewrite each of these expressions as something of the form 2x .

(a) (2n)n = ??

(b) 2n + 2n = ??

(c) (2n)(2n) = ??

(d) (2n)/2 = ??

(e)
√
2n = ??

(f) (2n)2 = ??

0.2. (a) What is 0 + 1 + 2 + · · · + (n − 2) + (n − 1) % n, when n is an odd integer? Prove your
answer!

(b) What is 0 + 1 + 2 + · · · + (n − 2) + (n − 1) % n, when n is even? Prove your answer!

0.3. What is (−99) % 10?

0.4. Without using a calculator, what are the last two digits of 3579986?

0.5. Without using a calculator, what is 1000! % 427? (That’s not me being excited about the
number one thousand, it’s one thousand factorial!)

0.6. Which values x ∈ Z11 satisfy x2 ≡11 5? Which satisfy x2 ≡11 6?

0.7. What is the result of xor’ing every n bit string? For example, the expression below is the
xor of every 5-bit string:

00000 ⊕ 00001 ⊕ 00010 ⊕ 00011 ⊕ · · · ⊕ 11110 ⊕ 11111

Give a convincing justi�cation of your answer.

0.8. Consider rolling several d-sided dice, where the sides are labeled {0, . . . ,d − 1}.

(a) When rolling two of these dice, what is the probability of rolling snake-eyes (a pair of
1s)?

(b) When rolling two of these dice, what is the probability that they don’t match?
(c) When rolling three of these dice, what is the probability that they all match?
(d) When rolling three of these dice, what is the probability that they don’t all match

(including the case where two match)?
(e) When rolling three of these dice, what is the probability that at least two of them match

(including the case where all three match)?
(f) When rolling three of these dice, what is the probability of seeing at least one 0?

0.9. When rolling two 6-sided dice, there is some probability of rolling snake-eyes (two 1s).
You determined this probability in the previous problem. In some game, I roll both dice
each time it is my turn. What is the smallest value t such that:

Pr[I have rolled snake-eyes in at least one of my �rst t turns] > 0.5?

In other words, how many turns until my probability of getting snake-eyes exceeds 50%?

9

1 One-Time Pad & Kerckho�s’

Principle

You can’t learn about cryptography without meeting Alice, Bob, and Eve. This chapter
is about the classic problem of private communication, in which Alice has a message
that she wants to convey to Bob, while also keeping the contents of the message hidden
from an eavesdropper1 Eve. You’ll soon learn that there is more to cryptography than just
private communication, but it is the logical place to start.

1.1 What Is [Not] Cryptography?

“To de�ne is to limit.”
—Oscar Wilde

Cryptography is not a magic spell that solves all security problems. Cryptography
can provide solutions to cleanly de�ned problems that often abstract away important but
messy real-world concerns. Cryptography can give guarantees about what happens in
the presence of certain well-de�ned classes of attacks. These guarantees may not apply if
real-world attackers “don’t follow the rules” of a cryptographic security model.

Always keep this in mind as we de�ne (i.e., limit) the problems that we solve in this
course.

Encryption Basics & Terminology

Let’s begin to formalize our scenario involving Alice, Bob, and Eve. Alice has a message
m that she wants to send (privately) to Bob. We call m the plaintext. We assume she
will somehow transform that plaintext into a value c (called the ciphertext) that she will
actually send to Bob. The process of transformingm into c is called encryption, and we will
use Enc to refer to the encryption algorithm. When Bob receives c , he runs a corresponding
decryption algorithm Dec to recover the original plaintextm.

We assume that the ciphertext may be observed by the eavesdropper Eve, so the (in-
formal) goal is for the ciphertext to be meaningful to Bob but meaningless to Eve.

Enc Dec

m c m

1“Eavesdropper” refers to someone who secretly listens in on a conversation between others. The term
originated as a reference to someone who literally hung from the eaves of a building in order to hear conver-
sations happening inside.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Secrets & Kerckho�s’ Principle

Something important is missing from this picture. If we want Bob to be able to decrypt c ,
but Eve to not be able to decrypt c , then Bob must have some information that Eve doesn’t
have (do you see why?). Something has to be kept secret from Eve.

You might suggest to make the details of the Enc and Dec algorithms secret. This
is how cryptography was done throughout most of the last 2000 years, but it has major
drawbacks. If the attacker does eventually learn the details of Enc and Dec, then the only
way to recover security is to invent new algorithms. If you have a system with many users,
then the only way to prevent everyone from reading everyone else’s messages is to invent
new algorithms for each pair of users. Inventing even one good encryption method is
already hard enough!

The �rst person to articulate this problem was Auguste Kerckho�s. In 1883 he for-
mulated a set of cryptographic design principles. Item #2 on his list is now known as
Kerckho�s’ principle:

Kerckho�s’ Principle:

“Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber entre
les mains de l’ennemi.”

Literal translation: [The method] must not be required to be secret, and it
must be able to fall into the enemy’s hands without causing inconvenience.

Bottom line: Design your system to be secure even if the attacker has com-
plete knowledge of all its algorithms.

If the algorithms themselves are not secret, then there must be some other secret infor-
mation in the system. That information is called the (secret) key. The key is just an extra
piece of information given to both the Enc and Dec algorithms. Another way to interpret
Kerckho�s’ principle is that all of the security of the system should be concentrated in the
secrecy of the key, not the secrecy of the algorithms. If a secret key gets compromised,
you only need to choose a new one, not reinvent an entirely new encryption algorithm.
Multiple users can all safely use the same encryption algorithm but with independently
chosen secret keys.

The process of choosing a secret key is called key generation, and we write KeyGen

to refer to the (randomized) key generation algorithm. We call the collection of three algo-
rithms (Enc, Dec, KeyGen) an encryption scheme. Remember that Kerckho�s’ principle
says that we should assume that an attacker knows the details of the KeyGen algorithm.
But also remember that knowing the details (i.e., source code) of a randomized algorithm
doesn’t mean you know the speci�c output it gave when the algorithm was executed.

KeyGen

Enc Dec

m c m

k

11

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Excuses, Excuses

Let’s practice some humility. Here is just a partial list of issues that are clearly important
for the problem of private communication, but which are not addressed by our de�nition
of the problem.

I We are not trying to hide the fact that Alice is sending something to Bob, we only
want to hide the contents of that message. Hiding the existence of a communication
channel is called steganography.

I We won’t consider the question of how c reliably gets from Alice to Bob. We’ll just
take this issue for granted.

I For now, we are assuming that Eve just passively observes the communication be-
tween Alice & Bob. We aren’t considering an attacker that tampers with c (causing
Bob to receive and decrypt a di�erent value), although we will consider such attacks
later in the book.

I We won’t discuss how Alice and Bob actually obtain a common secret key in the real
world. This problem (known as key distribution) is clearly incredibly important,
and we will discuss some clever approaches to it much later in the book.

In my defense, the problem we are solving is already rather non-trivial: once two
users have established a shared secret key, how can they use that key to communi-
cate privately?

I We won’t discuss how Alice and Bob keep their key secret, even after they have
established it. One of my favorite descriptions of cryptography is due to Lea Kissner
(former principal security engineer at Google): “cryptography is a tool for turning lots
of di�erent problems into key management problems.”

I Throughout this course we simply assume that the users have the ability to uni-
formly sample random strings. Indeed, without randomness there is no cryptogra-
phy. In the real world, obtaining uniformly random bits from deterministic com-
puters is extremely non-trivial. John von Neumann famously said, “Any one who
considers arithmetical methods of producing random digits is, of course, in a state of
sin.” Again, even when we take uniform randomness for granted, we still face the
non-trivial question of how to use that randomness for private communication (and
other applications), and also how to use only a manageable amount of randomness.

Not Cryptography

People use many techniques to try to hide information, but many are “non-cryptographic”
since they don’t follow Kerckho�s’ principle:

I Encoding/decoding methods like base64 . . .

joy of cryptography ↔ b25seSBuZXJkcyB3aWxsIHJlYWQgdGhpcw==

12

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

. . . are useful for incorporating arbitrary binary data into a structured �le format
that supports limited kinds of characters. But since base64 encoding/decoding in-
volves no secret information, it adds nothing in terms of security.

I Sometimes the simplest way to describe an encryption scheme is with operations on
binary strings (i.e., 0s and 1s) data. As we will see, one-time pad is de�ned in terms
of plaintexts represented as strings of bits. (Future schemes will require inputs to
be represented as a bitstring of a speci�c length, or as an element of Zn , etc.)
In order to make sense of some algorithms in this course, it may be necessary to
think about data being converted into binary representation. Just like with base64,
representing things in binary has no e�ect on security since it does not involve any
secret information. Writing something in binary is not a security measure!

1.2 Specifics of One-Time Pad

People have been trying to send secret messages for roughly 2000 years, but there are really
only 2 useful ideas from before 1900 that have any relevance to modern cryptography.
The �rst idea is Kerckho�s’ principle, which you have already seen. The other idea is
one-time pad (OTP), which illustrates several important concepts, and can even still be
found hiding deep inside many modern encryption schemes.

One-time pad is sometimes called “Vernam’s cipher” after Gilbert Vernam, a telegraph
engineer who patented the scheme in 1919. However, an earlier description of one-time
pad was rather recently discovered in an 1882 text by Frank Miller on telegraph encryp-
tion.2

In most of this book, secret keys will be strings of bits. We generally use the variable λ
to refer to the length (# of bits) of the secret key in a scheme, so that keys are elements of
the set {0, 1}λ . In the case of one-time pad, the choice of λ doesn’t a�ect security (λ = 10
is “just as secure” as λ = 1000); however, the length of the keys and plaintexts must be
compatible. In future chapters, increasing λ has the e�ect of making the scheme harder to
break. For that reason, λ is often called the security parameter of the scheme.

In one-time pad, not only are the keys λ-bit strings, but plaintexts and ciphertexts
are too. You should consider this to be just a simple coincidence, because we will soon
encounter schemes in which keys, plaintexts, and ciphertexts are strings of di�erent sizes.

The speci�c KeyGen, Enc, and Dec algorithms for one-time pad are given below:

Construction 1.1

(One-time pad)

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m ∈ {0, 1}λ):
return k ⊕m

Dec(k, c ∈ {0, 1}λ):
return k ⊕ c

Recall that “k ← {0, 1}λ” means to sample k uniformly from the set of λ-bit strings. This
uniform choice of key is the only randomness in all of the one-time pad algorithms. As we
will see, all of its security stems from this choice of using the uniform distribution; keys
that are chosen di�erently do not provide equivalent security.

2See the article Steven M. Bellovin: “Frank Miller: Inventor of the One-Time Pad.” Cryptologia 35 (3),
2011.

13

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Example Encrypting the following 20-bit plaintextm under the 20-bit key k using OTP results in the
ciphertext c below:

11101111101111100011 (m)
⊕ 00011001110000111101 (k)

11110110011111011110 (c = Enc(k,m))

Decrypting the following ciphertext c using the key k results in the plaintextm below:

00001001011110010000 (c)
⊕ 10010011101011100010 (k)

10011010110101110010 (m = Dec(k, c))

Note that Enc and Dec are essentially the same algorithm (return the xor of the two
arguments). This results in some small level of convenience and symmetry when imple-
menting one-time pad, but it is more of a coincidence than something truly fundamental
about encryption (see Exercises 1.12 & 2.5). Later on you’ll see encryption schemes whose
encryption & decryption algorithms look very di�erent.

Correctness

The �rst property of one-time pad that we should con�rm is that the receiver does indeed
recover the intended plaintext when decrypting the ciphertext. Without this property, the
thought of using one-time pad for communication seems silly. Written mathematically:

Claim 1.2 For all k,m ∈ {0, 1}λ , it is true that Dec(k, Enc(k,m)) =m.

Proof This follows by substituting the de�nitions of OTP Enc and Dec, then applying the prop-
erties of xor listed in Chapter 0.3. For all k,m ∈ {0, 1}λ , we have:

Dec(k, Enc(k,m)) = Dec(k,k ⊕m)

= k ⊕ (k ⊕m)

= (k ⊕ k) ⊕m

= 0λ ⊕m

=m.

Example Encrypting the following plaintextm under the key k results in ciphertext c , as follows:

00110100110110001111 (m)
⊕ 11101010011010001101 (k)

11011110101100000010 (c)

Decrypting c using the same key k results in the originalm:

11011110101100000010 (c)
⊕ 11101010011010001101 (k)

00110100110110001111 (m)

14

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Security

Suppose Alice and Bob are using one-time pad but are concerned that an attacker sees
their ciphertext. They can’t presume what an attacker will do after seeing the ciphertext.
But they would like to say something like, “because of the speci�c way the ciphertext was
generated, it doesn’t reveal any information about the plaintext to the attacker, no matter
what the attacker does with the ciphertext.”

We must �rst precisely specify how the ciphertext is generated. The Enc algorithm
already describes the process, but it is written from the point of view of Alice and Bob.
When talking about security, we have to think about what Alice and Bob do, but from the
eavesdropper’s point of view! From Eve’s point of view, Alice uses a key that was chosen
in a speci�c way (uniformly at random), she encrypts a plaintext with that key using OTP,
and �nally reveals only the resulting ciphertext (and not the key) to Eve.

More formally, from Eve’s perspective, seeing a ciphertext corresponds to receiving
an output from the following algorithm:

eavesdrop(m ∈ {0, 1}λ):
k ← {0, 1}λ

c := k ⊕m
return c

.

It’s crucial that you appreciate what this eavesdrop algorithm represents. It is meant
to describe not what the attacker does, but rather the process (carried out by Alice
and Bob!) that produces what the attacker sees. We always treat the attacker as some
(unspeci�ed) process that receives output from this eavesdrop algorithm. Our goal is to
say something like “the output of eavesdrop doesn’t reveal the inputm.”

eavesdrop is a randomized algorithm — remember that “k ← {0, 1}λ” means to sample
k from the uniform distribution on λ-bit strings. If you call eavesdrop several times,
even on the same input, you are likely to get di�erent outputs. Instead of thinking of
“eavesdrop(m)” as a single string, you should think of it as a probability distribution over
strings. Each time you call eavesdrop(m), you see a sample from that distribution.

Example Let’s take λ = 3 and work out by hand the distributions eavesdrop(010) and eavesdrop(111).
In each case eavesdrop chooses a value of k uniformly in {0, 1}3 — each of the possible
values with probability 1/8. For each possible choice of k , we can compute what the output of
eavesdrop (c) will be:

eavesdrop(010):

Pr k output c = k ⊕ 010

1⁄8 000 010
1⁄8 001 011
1⁄8 010 000
1⁄8 011 001
1⁄8 100 110
1⁄8 101 111
1⁄8 110 100
1⁄8 111 101

eavesdrop(111):

Pr k output c = k ⊕ 111

1⁄8 000 111
1⁄8 001 110
1⁄8 010 101
1⁄8 011 100
1⁄8 100 011
1⁄8 101 010
1⁄8 110 001
1⁄8 111 000

15

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

So the distribution eavesdrop(010) assigns probabilty 1/8 to 010, probability 1/8 to 011, and
so on.

In this example, notice how every string in {0, 1}3 appears exactly once in the c column
of eavesdrop(010). This means that eavesdrop assigns probability 1/8 to every string in
{0, 1}3, which is just another way of saying that the distribution is the uniform distribu-
tion on {0, 1}3. The same can be said about the distribution eavesdrop(111), too. Both
distributions are just the uniform distribution in disguise!

There is nothing special about 010 or 111 in these examples. For any λ and any m ∈
{0, 1}λ , the distribution eavesdrop(m) is the uniform distribution over {0, 1}λ .

Claim 1.3 For every m ∈ {0, 1}λ , the distribution eavesdrop(m) is the uniform distribution on
{0, 1}λ . Hence, for allm,m′ ∈ {0, 1}λ , the distributions eavesdrop(m) and eavesdrop(m′)
are identical.

Proof Arbitrarily �x m, c ∈ {0, 1}λ . We will calculate the probability that eavesdrop(m) pro-
duces output c . That event happens only when

c = k ⊕m ⇐⇒ k =m ⊕ c .

The equivalence follows from the properties of xor given in Section 0.3. That is,

Pr[eavesdrop(m) = c] = Pr[k =m ⊕ c],

where the probability is over uniform choice of k ← {0, 1}λ .
We are considering a speci�c choice for m and c , so there is only one value of k that

makes k =m ⊕ c true (causesm to encrypt to c), and that value is exactlym ⊕ c . Since k is
chosen uniformly from {0, 1}λ , the probability of choosing the particular value k =m ⊕ c
is 1/2λ .

In summary, for every m and c , the probability that eavesdrop(m) outputs c is ex-
actly 1/2λ . This means that the output of eavesdrop(m), for any m, follows the uniform
distribution. �

One way to interpret this statement of security in more down-to-earth terms:

If an attacker sees a single ciphertext, encrypted with one-time pad, where the
key is chosen uniformly and kept secret from the attacker, then the ciphertext
appears uniformly distributed.

Why is this signi�cant? Taking the eavesdropper’s point of view, suppose someone
chooses a plaintextm and you get to see the resulting ciphertext — a sample from the distri-
bution eavesdrop(m). But this is a distribution that you can sample from yourself, even if
you don’t knowm! You could have chosen a totally di�erentm′ and run eavesdrop(m′) in
your imagination, and this would have produced the same distribution as eavesdrop(m).
The “real” ciphertext that you see doesn’t carry any information aboutm if it is possible to
sample from the same distribution without even knowingm!

16

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Discussion

I Isn’t there a paradox? Claim 1.2 says that c can always be decrypted to get m,
but Claim 1.3 says that c contains no information about m! The answer to this
riddle is that Claim 1.2 talks about what can be done with knowledge of the key
k (Alice & Bob’s perspective). Claim 1.3 talks about the output distribution of the
eavesdrop algorithm, which doesn’t include k (Eve’s perspective). In short, if you
know k , then you can decrypt c to obtain m; if you don’t know k , then c carries no
information aboutm (in fact, it looks uniformly distributed). This is becausem, c,k
are all correlated in a delicate way.3

I Isn’t there another paradox? Claim 1.3 says that the output of eavesdrop(m)
doesn’t depend on m, but we can see the eavesdrop algorithm literally using its
argument m right there in the last line! The answer to this riddle is perhaps best
illustrated by the previous illustrations of the eavesdrop(010) and eavesdrop(111)
distributions. The two tables of values are indeed di�erent (so the choice of m ∈
{010, 111} clearly has some e�ect), but they represent the same probability distribu-
tion (since order doesn’t matter). Claim 1.3 considers only the resulting probability
distribution.

I You probably think about security in terms of a concrete “goal” for the attacker:
recover the key, recover the plaintext, etc. Claim 1.3 doesn’t really refer to attackers
in that way, and it certainly doesn’t specify a goal. Rather, we are thinking about
security by comparing to some hypothetical “ideal” world. I would be satis�ed if the
attacker sees only a source of uniform bits, because in this hypothetical world there
are no keys and no plaintexts to recover! Claim 1.3 says that when we actually use
OTP, it looks just like this hypothetical world, from the attacker’s point of view. If
we imagine any “goal” at all for the attacker in this kind of reasoning, it’s to detect
that ciphertexts don’t follow a uniform distribution. By showing that the attacker
can’t even achieve this modest goal, it shows that the attacker couldn’t possibly
achieve other, more natural, goals like key recovery and plaintext recovery.

Limitations

One-time pad is incredibly limited in practice. Most notably:

I Its keys are as long as the plaintexts they encrypt. This is basically unavoidable (see
Exercise 2.11) and leads to a kind of chicken-and-egg dilemma in practice: If two
users want to privately convey a λ-bit message, they �rst need to privately agree on
a λ-bit string.

I A key can be used to encrypt only one plaintext (hence, “one-time” pad); see Exer-
cise 1.6. Indeed, we can see that the eavesdrop subroutine in Claim 1.3 provides no
way for a caller to guarantee that two plaintexts are encrypted with the same key,
so it is not clear how to use Claim 1.3 to argue about what happens in one-time pad
when keys are intentionally reused in this way.

3This correlation is explored further in Chapter 3.

17

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Despite these limitations, one-time pad illustrates fundamental ideas that appear in
most forms of encryption in this course.

Exercises

1.1. The one-time pad encryption of plaintext mario (when converted from ascii to binary in
the standard way) under key k is:

1000010000000111010101000001110000011101.

What is the one-time pad encryption of luigi under the same key?

1.2. Alice is using one-time pad and notices that when her key is the all-zeroes string k = 0λ ,
then Enc(k,m) = m and her message is sent in the clear! To avoid this problem, she
decides to modify KeyGen to exclude the all-zeroes key. She modi�es KeyGen to choose
a key uniformly from {0, 1}λ \ {0λ}, the set of all λ-bit strings except 0λ . In this way, she
guarantees that her plaintext is never sent in the clear.

Is it still true that the eavesdropper’s ciphertext distribution is uniformly distributed on
{0, 1}λ? Justify your answer.

1.3. When Alice encrypts the key k itself using one-time pad, the ciphertext will always be the
all-zeroes string! So if an eavesdropper sees the all-zeroes ciphertext, she learns that Alice
encrypted the key itself. Does this contradict Claim 1.3? Why or why not?

1.4. What is so special about de�ning OTP using the xor operation? Suppose we use the
bitwise-and operation (which we will write as ‘&’) and de�ne a variant of OTP as follows:

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m ∈ {0, 1}λ):
return k &m

Is this still a good choice for encryption? Why / why not?

1.5. Describe the �aw in this argument:

Consider the following attack against one-time pad: upon seeing a ciphertext c ,
the eavesdropper tries every candidate key k ∈ {0, 1}λ until she has found the
one that was used, at which point she outputs the plaintextm. This contradicts
the argument in Section 1.2 that the eavesdropper can obtain no information
aboutm by seeing the ciphertext.

1.6. Suppose Alice encrypts two plaintextsm andm′ using one-time pad with the same key k .
What information aboutm andm′ is leaked to an eavesdropper by doing this (assume the
eavesdropper knows that Alice has reused k)? Be as speci�c as you can!

1.7. You (Eve) have intercepted two ciphertexts:

c1 = 1111100101111001110011000001011110000110

18

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

c2 = 1111101001100111110111010000100110001000

You know that both are OTP ciphertexts, encrypted with the same key. You know that
either c1 is an encryption of alpha and c2 is an encryption of bravo or c1 is an encryption
of delta and c2 is an encryption of gamma (all converted to binary from ascii in the standard
way).

Which of these two possibilities is correct, and why? What was the key k?

1.8. A known-plaintext attack refers to a situation where an eavesdropper sees a ciphertext
c = Enc(k,m) and also learns/knows what plaintextm was used to generate c .

(a) Show that a known-plaintext attack on OTP results in the attacker learning the key k .

(b) Can OTP be secure if it allows an attacker to recover the encryption key? Is this a
contradiction to the security we showed for OTP? Explain.

1.9. Suppose we modify the subroutine discussed in Claim 1.3 so that it also returns k :

eavesdrop′(m ∈ {0, 1}λ):
k ← {0, 1}λ

c := k ⊕m
return (k , c)

.

Is it still true that for every m, the output of eavesdrop′(m) is distributed uniformly in
({0, 1}λ)2? Or is the output distribution di�erent for di�erent choice ofm?

1.10. In this problem we discuss the security of performing one-time pad encryption twice:

(a) Consider the following subroutine that models the result of applying one-time pad
encryption with two independent keys:

eavesdrop′(m ∈ {0, 1}λ):
k1 ← {0, 1}

λ

k2 ← {0, 1}
λ

c := k2 ⊕ (k1 ⊕m)
return c

.

Show that the output of this subroutine is uniformly distributed in {0, 1}λ .

(b) What security is provided by performing one-time pad encryption twice with the same
key?

1.11. We mentioned that one-time pad keys can be used to encrypt only one plaintext, and how
this was re�ected in the eavesdrop subroutine of Claim 1.3. Is there a similar restriction
about re-using plaintexts in OTP (but with independently random keys for di�erent cipher-
texts)? If an eavesdropper knows that the same plaintext is encrypted twice (but doesn’t
know what the plaintext is), can she learn anything? Does Claim 1.3 have anything to say
about a situation where the same plaintext is encrypted more than once?

19

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

1.12. There is nothing exclusively special about strings and XOR in OTP. We can get the same
properties using integers mod n and addition mod n.

This problem considers a variant of one-time pad, in which the keys, plaintexts, and ci-
phertexts are all elements of Zn instead of {0, 1}λ .

(a) What is the decryption algorithm that corresponds to the following encryption algo-
rithm?

Enc(k,m ∈ Zn):
return (k +m) % n

.

(b) Show that the output of the following subroutine is uniformly distributed in Zn :

eavesdrop′(m ∈ Zn):
k ← Zn
c := (k +m) % n
return c

.

(c) It’s not just the distribution of keys that is important. The way that the key is combined
with the plaintext is also important. Show that the output of the following subroutine
is not necessarily uniformly distributed in Zn :

eavesdrop′(m ∈ Zn):
k ← Zn
c := (k ·m) % n
return c

.

20

2 The Basics of Provable Security

Edgar Allan Poe was not only an author, but also a cryptography enthusiast. He once
wrote, in a discussion on the state of the art in cryptography:1

“Human ingenuity cannot concoct a cipher which human ingenuity cannot resolve.”

This was an accurate assessment of the cryptography that existed in 1841. Whenever
someone would come up with an encryption method, someone else would inevitably �nd
a way to break it, and the cat-and-mouse game would repeat again and again.

Modern 21st-century cryptography, however, is di�erent. This book will introduce
you to many schemes whose security we can prove in a very speci�c sense. The code-
makers can win against the code-breakers.

It’s only possible to prove things about security by having formal de�nitions of what
it means to be “secure.” This chapter is about the fundamental skills that revolve around
security de�nitions: how to write them, how to understand & interpret them, how to
prove security using the hybrid technique, and how to demonstrate insecurity using attacks
against the security de�nition.

2.1 How to Write a Security Definition

So far the only form of cryptography we’ve seen is one-time pad, so our discussion of secu-
rity has been rather speci�c to one-time pad. It would be preferable to have a vocabulary
to talk about security in a more general sense, so that we can ask whether any encryption
scheme is secure.

In this section, we’ll develop two security de�nitions for encryption.

What Doesn’t Go Into a Security Definition

A security de�nition should give guarantees about what can happen to a system in the
presence of an attacker. But not all important properties of a system refer to an attacker.
For encryption speci�cally:

I We don’t reference any attacker when we say that the Enc algorithm takes two
arguments (a key and a plaintext), or that the KeyGen algorithm takes no arguments.
Specifying the types of inputs/outputs (i.e., the “function signature”) of the various
algorithms is therefore not a statement about security. We call these properties the
syntax of the scheme.

1Edgar Allan Poe, “A Few Words on Secret Writing,” Graham’s Magazine, July 1841, v19.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

I Even if there is no attacker, it’s still important that decryption is an inverse of en-
cryption. This is not a security property of the encryption scheme. Instead, we call
it a correctness property.

Below are the generic de�nitions for syntax and correctness of symmetric-key encryp-
tion:

Definition 2.1

(Encryption syntax)

A symmetric-key encryption (SKE) scheme consists of the following algorithms:

I KeyGen: a randomized algorithm that outputs a key k ∈ K .

I Enc: a (possibly randomized) algorithm that takes a key k ∈ K and plaintextm ∈ M
as input, and outputs a ciphertext c ∈ C.

I Dec: a deterministic algorithm that takes a key k ∈ K and ciphertext c ∈ C as input,
and outputs a plaintextm ∈ M.

We callK the key space,M themessage space, and C the ciphertext space of the scheme.
Sometimes we refer to the entire scheme (the collection of all three algorithms) by a single
variable Σ. When we do so, we write Σ.KeyGen, Σ.Enc, Σ.Dec, Σ.K , Σ.M, and Σ.C to refer
to its components.

Definition 2.2

(SKE correctness)

An encryption scheme Σ satis�es correctness if for all k ∈ Σ.K and allm ∈ Σ.M,

Pr
[
Σ.Dec(k, Σ.Enc(k,m)) =m

]
= 1.

The de�nition is written in terms of a probability because Enc is allowed to be a random-
ized algorithm. In other words, decrypting a ciphertext with the same key that was used
for encryption must always result in the original plaintext.

Example An encryption scheme can have the appropriate syntax but still have degenerate behavior like
Enc(k,m) = 0λ (i.e., every plaintext is “encrypted” to 0λ). Such a scheme would not satisfy
the correctness property.

A di�erent scheme de�ned by Enc(k,m) =m (i.e., the “ciphertext” is always equal to the
plaintext itself) and Dec(k, c) = c does satisfy the correctness property, but would not satisfy
any reasonable security property.

“Real-vs-Random” Style of Security Definition

Let’s try to make a security de�nition that formalizes the following intuitive idea:

“an encryption scheme is a good one if its ciphertexts look like random junk to
an attacker.”

Security de�nitions always consider the attacker’s view of the system. What is the “in-
terface” that Alice & Bob expose to the attacker by their use of the cryptography, and does
that particular interface bene�t the attacker?

In this example, we’re considering a scenario where the attacker gets to observe ci-
phertexts. How exactly are these ciphertexts generated? What are the inputs to Enc (key
and plaintext), and how are they chosen?

22

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

I Key: It’s hard to imagine any kind of useful security if the attacker knows the key.
Hence, we consider that the key is kept secret from the attacker. Of course, the key
is generated according to the KeyGen algorithm of the scheme.
At this point in the course, we consider encryption schemes where the key is used
to encrypt only one plaintext. Somehow this restriction must be captured in our
security de�nition. Later, we will consider security de�nitions that consider a key
that is used to encrypt many things.

I Plaintext: It turns out to be useful to consider that the attacker actually chooses the
plaintexts. This a “pessimistic” choice, since it gives much power to the attacker.
However, if the encryption scheme is indeed secure when the attacker chooses the
plaintexts, then it’s also secure in more realistic scenarios where the attacker has
some uncertainty about the plaintexts.

These clari�cations allow us to �ll in more speci�cs about our informal idea of security:

“an encryption scheme is a good one if its ciphertexts look like random junk to
an attacker . . . when each key is secret and used to encrypt only one plaintext,
even when the attacker chooses the plaintexts.”

A concise way to express all of these details is to consider the attacker as a calling
program to the following subroutine:

ctxt(m ∈ Σ.M):
k ← Σ.KeyGen

c := Σ.Enc(k,m)
return c

.

A calling program can choose the argument to the subroutine (in this case, a plaintext),
and see only the resulting return value (in this case, a ciphertext). The calling program
can’t see values of privately-scoped variables (like k in this case). If the calling program
makes many calls to the subroutine, a fresh key k is chosen each time.

The interaction between an attacker (calling program) and this ctxt subroutine ap-
pears to capture the relevant scenario. We would like to say that the outputs from the
ctxt subroutine are uniformly distributed. A convenient way of expressing this property
is to say that this ctxt subroutine should have the same e�ect on every calling program
as a ctxt subroutine that (explicitly) samples its output uniformly.

ctxt(m ∈ Σ.M):
k ← Σ.KeyGen

c := Σ.Enc(k,m)
return c

vs.
ctxt(m ∈ Σ.M):
c ← Σ.C
return c

.

Intuitively, no calling program should have any way of determining which of these two
implementations is answering subroutine calls. As an analogy, one way of saying that “foo
is a correct sorting algorithm” is to say that “no calling program would behave di�erently
if foo were replaced by an implementation of mergesort.”

In summary, we can de�ne security for encryption in the following way:

23

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

“an encryption scheme is a good one if, when you plug its KeyGen and Enc algo-
rithms into the template of the ctxt subroutine above, the two implementations
of ctxt induce identical behavior in every calling program.”

In a few pages, we introduce formal notation and de�nitions for the concepts introduced
here. In particular, both the calling program and subroutine can be randomized algorithms,
so we should be careful about what we mean by “identical behavior.”

Example One-time pad is de�ned with KeyGen sampling k uniformly from {0, 1}λ and Enc(k,m) =
k ⊕m. It satis�es our new security property since, when we plug in this algorithms into the
above template, we get the following two subroutine implementations:

ctxt(m):
k ← {0, 1}λ // KeyGen of OTP
c := k ⊕m // Enc of OTP
return c

vs.
ctxt(m):
c ← {0, 1}λ // C of OTP
return c

,

and these two implementations have the same e�ect on all calling programs.

“Le�-vs-Right” Style of Security Definition

Here’s a di�erent intuitive idea of security:

“an encryption scheme is a good one if encryptions ofmL look like encryptions
ofmR to an attacker (for all possiblemL ,mR)”

As above, we are considering a scenario where the attacker sees some ciphertext(s).
These ciphertexts are generated with some key; where does that key come from? These
ciphertexts encrypt either somemL or somemR ; where domL andmR come from? We can
answer these questions in a similar way as the previous example. Plaintexts mL and mR
can be chosen by the attacker. The key is chosen according to KeyGen so that it remains
secret from the attacker (and is used to generate only one ciphertext).

“an encryption scheme is a good one if encryptions ofmL look like encryptions of
mR to an attacker, when each key is secret and used to encrypt only one plaintext,
even when the attacker choosesmL andmR .”

As before, we formalize this idea by imagining the attacker as a program that calls a par-
ticular interface. This time, the attacker will choose two plaintexts mL and mR , and get
a ciphertext in return.2 Depending on whether mL or mR is actually encrypted, those
interfaces are implemented as follows:

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c := Σ.Enc(k,mL)

return c

;

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c := Σ.Enc(k,mR)

return c

.

2There may be other reasonable ways to formalize this intuitive idea of security. For example, we might
choose to give the attacker two ciphertexts instead of one, and demand that the attacker can’t determine which
of them encryptsmL and which encryptsmR . See Exercise 2.15.

24

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Now the formal way to say that encryptions ofmL “look like” encryptions ofmR is:

“an encryption scheme is a good one if, when you plug its KeyGen and Enc

algorithms into the template of the eavesdrop subroutines above, the two imple-
mentations of eavesdrop induce identical behavior in every calling program.”

Example Does one-time pad satisfy this new security property? To �nd out, we plug in its algorithms
to the above template, and obtain the following implementations:

eavesdrop(mL,mR):
k ← {0, 1}λ // KeyGen of OTP
c := k ⊕mL // Enc of OTP
return c

eavesdrop(mL,mR):
k ← {0, 1}λ // KeyGen of OTP
c := k ⊕mR // Enc of OTP
return c

If these two implementations have the same e�ect on all calling programs (and indeed they
do), then we would say that OTP satis�es this security property.

Is this a better/worse way to de�ne security than the previous way? One security
de�nition considers an attacker whose goal is to distinguish real ciphertexts from ran-
dom values (real-vs-random paradigm), and the other considers an attacker whose goal is
to distinguish real ciphertexts of two di�erent plaintexts (left-vs-right paradigm). Is one
“correct” and the other one “incorrect?” We save such discussion until later in the chapter.

2.2 Formalisms for Security Definitions

So far, we’ve de�ned security in terms of a single, self-contained subroutine, and imagined
the attacker as a program that calls this subroutine. Later in the course we will need to
generalize beyond a single subroutine, to a collection of subroutines that share common
(private) state information. Staying with the software terminology, we call this collection
a library:

Definition 2.3

(Libraries)

A library L is a collection of subroutines and private/static variables. A library’s interface
consists of the names, argument types, and output type of all of its subroutines (just like a
Java interface). If a program A includes calls to subroutines in the interface of L, then we
write A � L to denote the result of linking A to L in the natural way (answering those
subroutine calls using the implementation speci�ed in L). We write A � L ⇒ z to denote
the event that program A �L outputs the value z.

If A or L is a program that makes random choices, then the output of A � L is a
random variable. It is often useful to consider probabilities like Pr[A � L ⇒ true].

Example Here is a familiar library:
L

ctxt(m):
k ← {0, 1}λ

c := k ⊕m
return c

25

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

And here is one possible calling program:

A:

m ← {0, 1}λ

c := ctxt(m)
returnm

?
= c

You can hopefully convince yourself that

Pr[A � L ⇒ true] = 1/2λ .

If this A is linked to a di�erent library, its output probability may be di�erent. If a di�erent
calling program is linked to this L, the output probability may be di�erent.

Example A library can contain several subroutines and private variables that are kept static between
subroutine calls. For example, here is a simple library that picks a string s uniformly and
allows the calling program to guess s .

L

s ← {0, 1}λ

reset():
s ← {0, 1}λ

guess(x ∈ {0, 1}λ):

return x
?
= s

Our convention is that code outside of a subroutine (like the �rst line here) is run once at
initialization time. Variables de�ned at initialization time (like s here) are available in all
subroutine scopes (but not to the calling program).

Interchangeability

The idea that “no calling program behaves di�erently in the presence of these two li-
braries” still makes sense even for libraries with several subroutines. Since this is such a
common concept, we devote new notation to it:

Definition 2.4

(Interchangeable)

Let Lle� and Lright be two libraries that have the same interface. We say that Lle� and Lright

are interchangeable, and write Lle� ≡ Lright , if for all programsA that output a boolean
value,

Pr[A � Lle� ⇒ true] = Pr[A � Lright ⇒ true].

This de�nition considers calling programs that give boolean output. Imagine a calling
program / attacker whose only goal is to distinguish two particular libraries (indeed, we
often refer to the calling program as a distinguisher). A boolean output is enough for
that task. You can think of the output bit as the calling program’s “guess” for which library
the calling program thinks it is linked to.

26

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

The distinction between “calling program outputs true” and “calling program outputs
false” is not signi�cant. If two libraries don’t a�ect the calling program’s probability of
outputting true, then they also don’t a�ect its probability of outputting false:

Pr[A � Lle� ⇒ true] = Pr[A � Lright ⇒ true]

⇔ 1 − Pr[A � Lle� ⇒ true] = 1 − Pr[A � Lright ⇒ true]

⇔ Pr[A � Lle� ⇒ false] = Pr[A � Lright ⇒ false].

Example Here are some very simple and straightforward ways that two libraries may be interchange-
able. Hopefully it’s clear that each pair of libraries has identical behavior, and therefore
identical e�ect on all calling programs.

Despite being very simple examples, each of these concepts shows up as a building block
in a real security proof in this book.

foo(x):
if x is even:

return 0
else if x is odd:

return 1
else:

return -1

≡

foo(x):
if x is even:

return 0
else if x is odd:

return 1
else:

return∞

Their only di�erence happens in an un-
reachable block of code.

foo(x):
return bar(x , x)

bar(a,b):
k ← {0, 1}λ

return k ⊕ a

≡

foo(x):
return bar(x , 0λ)

bar(a,b):
k ← {0, 1}λ

return k ⊕ a

Their only di�erence is the value they as-
sign to a variable that is never actually
used.

foo(x ,n):
for i = 1 to λ:

bar(x , i)
≡

foo(x ,n):
for i = 1 to n:

bar(x , i)
for i = n + 1 to λ:

bar(x , i)

Their only di�erence is that one library
unrolls a loop that occurs in the other li-
brary.

foo(x):
k ← {0, 1}λ

y ← {0, 1}λ

return k ⊕ y ⊕ x

≡

foo(x):
k ← {0, 1}λ

return k ⊕ bar(x)

bar(x):
y ← {0, 1}λ

return y ⊕ x

Their only di�erence is that one library
inlines a subroutine call that occurs in
the other library.

Example Here are more simple examples of interchangeable libraries that involve randomness:

27

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

foo():
x ← {0, 1}λ

y ← {0, 1}λ

return x ‖y

≡

foo():
z ← {0, 1}2λ

return z

The uniform distribution over strings acts inde-
pendently on di�erent characters in the string (“‖”
refers to concatenation).

k ← {0, 1}λ

foo(x):
return k ⊕ x

≡

foo(x):
if k not de�ned:
k ← {0, 1}λ

return k ⊕ x

Sampling a value “eagerly” (as soon as possible)
vs. sampling a value “lazily” (at the last possible
moment before the value is needed). We assume
that k is static/global across many calls to foo,
and initially unde�ned.

Formal Restatements of Previous Concepts

We can now re-state our security de�nitions from the previous section, using this new
terminology.

Our “real-vs-random” style of security de�nition for encryption can be expressed as
follows:

Definition 2.5

(Uniform ctxts)

An encryption scheme Σ has one-time uniform ciphertexts if:

LΣ
ots$-real

ctxt(m ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,m)
return c

≡

LΣ
ots$-rand

ctxt(m ∈ Σ.M):
c ← Σ.C
return c

In other words, if you �ll in the speci�cs of Σ (i.e., the behavior of its KeyGen and Enc)
into these two library “templates,” and you get two libraries that are interchangeable (i.e.,
have the same e�ect on all calling programs), we will say that Σ has one-time uniform
ciphertexts.

Throughout this course, we will use the “$” symbol to denote randomness (as in real-
vs-random).3

Our “left-vs-right” style of security de�nition can be expressed as follows:

Definition 2.6

(One-time secrecy)

An encryption scheme Σ has one-time secrecy if:

LΣ
ots-L

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,mL)

return c

≡

LΣ
ots-R

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,mR)

return c

3It is quite common in CS literature to use the “$” symbol when referring to randomness. This stems
from thinking of randomized algorithms as algorithms that “toss coins.” Hence, randomized algorithms need
to have spare change (i.e., money) sitting around. By convention, randomness comes in US dollars.

28

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Previously in Claim 1.3 we argued that one-time-pad ciphertexts follow the uniform
distribution. This actually shows that OTP satis�es the uniform ciphertexts de�nition:

Claim 2.7

(OTP rule)

One-time pad satis�es the one-time uniform ciphertexts property. In other words:

Lotp-real

eavesdrop(m ∈ {0, 1}λ):
k ← {0, 1}λ // OTP.KeyGen

return k ⊕m // OTP.Enc(k,m)

≡

Lotp-rand

eavesdrop(m ∈ {0, 1}λ):
c ← {0, 1}λ // OTP.C
return c

Because this property of OTP is quite useful throughout the course, I’ve given these
two libraries special names (apart from LOTP

ots$-real
and LOTP

ots$-rand
).

Discussion, Pitfalls

It is a common pitfall to imagine the calling program A being simultaneously linked to
both libraries, but this is not what the de�nition says. The de�nition of L1 ≡ L2 refers to
two di�erent executions: one whereA is linked only to L1 for its entire lifetime, and one
where A is linked only to L2 for its entire lifetime. There is never a time where some of
A’s subroutine calls are answered byL1 and others byL2. This is an especially important
distinction when A makes several subroutine calls in a single execution.

Another common pitfall is confusion about the di�erence between the algorithms of
an encryption scheme (e.g., what is shown in Construction 1.1) and the libraries used in a
security de�nition (e.g., what is shown in De�nition 2.6). The big di�erence is:

I The algorithms of the scheme show a regular user’s view of things. For example,
the Enc algorithm takes two inputs: a key and a plaintext. Is there any way of
describing an algorithm that takes two arguments other than writing something
like Construction 1.1?

I The libraries capture the attacker’s view of of a particular scenario, where the users
use the cryptographic algorithms in a very speci�c way. For example, when we talk
about security of encryption, we don’t guarantee security when Alice lets the at-
tacker choose her encryption key! But letting the attacker choose the plaintext is
�ne; we can guarantee security in that scenario. That’s why De�nition 2.5 describes
a subroutine that calls Enc on a plaintext that is chosen by the calling program, but
on a key k chosen by the library.

A security de�nition says that some task (e.g., distinguishing ciphertexts from ran-
dom junk) is impossible, when the attacker is allowed certain in�uence over the
inputs to the algorithms (e.g., full choice of plaintexts, but no in�uence over the
key), and is allowed to see certain outputs from those algorithms (e.g., ciphertexts).

It’s wrong to summarize one-time secrecy as: “I’m not allowed to choose what to
encrypt, I have to ask the attacker to choose for me.” The correct interpretation is: “If I
encrypt only one plaintext per key, then I am safe to encrypt things even if the attacker
sees the resulting ciphertext and even if she has some in�uence or partial information on
what I’m encrypting, because this is the situation captured in the one-time secrecy library.”

29

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Kerckho�s’ Principle, Revisited

Kerckho�s’ Principle says to assume that the attacker has complete knowledge of the
algorithms being used. Assume that the choice of keys is the only thing unknown to the
attacker. Let’s see how Kerckho�s’ Principle is re�ected in our formal security de�nitions.

Suppose I write down the source code of two libraries, and your goal is to write an
e�ective distinguisher. So you study the source code of the two libraries and write the
best distinguisher that exists. It would be fair to say that your distinguisher “knows”
what algorithms are used in the libraries, because it was designed based on the source
code of these libraries. The de�nition of interchangeability considers literally every calling
program, so it must also consider calling programs like yours that “know” what algorithms
are being used.

However, there is an important distinction to make. If you know you might be linked
to a library that executes the statement “k ← {0, 1}λ”, that doesn’t mean you know the
actual value ofk that was chosen at runtime. Our convention is that all variables within the
library are privately scoped, and the calling program can learn about them only indirectly
through subroutine outputs. In the library-distinguishing game, you are not allowed to
pick a di�erent calling program based on random choices that the library makes! After
we settle on a calling program, we measure its e�ectiveness in terms of probabilities that
take into account all possible outcomes of the random choices in the system.

In summary, the calling program “knows” what algorithms are being used (and how
they are being used!) because the choice of the calling program is allowed to depend on
the 2 speci�c libraries that we consider. The calling program “doesn’t know” things like
secret keys because the choice of calling program isn’t allowed to depend on the outcome
of random sampling done at runtime.

Kerckho�s’ Principle, applied to our formal terminology:

Assume that the attacker knows every fact in the universe, except for:

1. which of the two possible libraries it is linked to in any particular execu-
tion, and

2. the random choices that the library will make during any particular ex-
ecution (which are usually assigned to privately scoped variables within
the library).

2.3 How to Demonstrate Insecurity with A�acks

We always de�ne security with respect to two libraries — or, if you like, two library tem-
plates that describe how to insert the algorithms of a cryptographic scheme into two li-
braries. If the two libraries that you get (after �lling in the speci�cs of a particular scheme)
are interchangeable, then we say that the scheme satis�es the security property. If we want
to show that some scheme is insecure, we have to demonstrate just one calling program
that behaves di�erently in the presence of those two libraries.

Let’s demonstrate this process with the following encryption scheme, which is like
one-time pad but uses bitwise-and instead of xor:

30

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Construction 2.8 K = {0, 1}λ

M = {0, 1}λ

C = {0, 1}λ

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m):
return k &m // bitwise-and

I haven’t shown the Dec algorithm, because in fact there is no way to write one that
satis�es the correctness requirement. But let’s pretend we haven’t noticed that yet, and ask
whether this encryption scheme satis�es the two security properties de�ned previously.

Claim 2.9 Construction 2.8 does not have one-time uniform ciphertexts (De�nition 2.5).

Proof To see whether Construction 2.8 satis�es uniform one-time ciphertexts, we have to plug
in its algorithms into the two libraries of De�nition 2.5 and see whether the resulting
libraries are interchangeable. We’re considering the following two libraries:

LΣ
ots$-real

ctxt(m ∈ {0, 1}λ):
k ← {0, 1}λ // Σ.KeyGen

c := k &m // Σ.Enc

return c

LΣ
ots$-rand

ctxt(m ∈ {0, 1}λ):
c ← {0, 1}λ // Σ.C
return c

To show that these two libraries are not interchangeable, we need to write a calling pro-
gram that behaves di�erently in their presence. The calling program should make one
or more calls to the ctxt subroutine. That means it needs to choose the input m that it
passes, and it must make some conclusion (about which of the two libraries it is linked to)
based on the return value that it gets. Whatm should the calling program choose as input
to ctxt? What should the calling program look for in the return values?

There are many valid ways to write a good calling program, and maybe you can think
of several. One good approach is to observe that bitwise-and with k can never “turn a
0 into a 1.” So perhaps the calling program should choose m to consist of all 0s. When
m = 0λ , the Lots$-real library will always return all zeroes, but the Lots$-rand library may
return strings with both 0s and 1s.

We can formalize this idea with the following calling program:

A:
c := ctxt(0λ)
return c

?
= 0λ

.

Next, let’s ensure that this calling program behaves di�erently when linked to each of
these two libraries.

31

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

A:
c := ctxt(0λ)
return c

?
= 0λ

�

LΣ
ots$-real

ctxt(m):
k ← {0, 1}λ

c := k &m
return c

WhenA is linked toLots$-real, c is computed as k&0λ .
No matter what k is, the result is always all-zeroes.
Therefore, A will always return true.

In other words, Pr[A � Lots$-real ⇒ true] = 1.

A:
c := ctxt(0λ)
return c

?
= 0λ

�

LΣ
ots$-rand

ctxt(m):
c ← {0, 1}λ

return c

WhenA is linked to Lots$-rand, c is chosen uniformly
from {0, 1}λ . The probability that c then happens to
be all-zeroes is 1/2λ .

In other words, Pr[A � Lots$-rand ⇒ true] = 1/2λ .

Since these two probabilities are di�erent, this shows that LΣ
ots$-real

. LΣ
ots$-rand

. In
other words, the scheme does not satisfy this uniform ciphertexts property. �

So far we have two security de�nitions. Does this encryption scheme satisfy one but
not the other?

Claim 2.10 Construction 2.8 does not satisfy one-time secrecy (De�nition 2.6).

Proof This claim refers to a di�erent security de�nition, which involves two di�erent libraries.
When we plug in the details of Construction 2.8 into the libraries of De�nition 2.6, we get
the following:

LΣ
ots-L

eavesdrop(mL,mR):
k ← {0, 1}λ // Σ.KeyGen

c := k &mL // Σ.Enc(k,mL)

return c

LΣ
ots-R

eavesdrop(mL,mR):
k ← {0, 1}λ // Σ.KeyGen

c := k &mR // Σ.Enc(k,mR)

return c

Now we need to write a calling program that behaves di�erently in the presence of these
two libraries. We can use the same overall idea as last time, but not the same actual calling
program, since these libraries provide a di�erent interface. In this example, the calling
program needs to call the eavesdrop subroutine which takes two arguments mL and mR .
How should the calling program choosemL andmR? Which two plaintexts have di�erent
looking ciphertexts?

A good approach is to choose mL to be all zeroes and mR to be all ones. We know
from before that an all-zeroes plaintext always encrypts to an all-zeroes ciphertext, so the
calling program can check for that condition. More formally, we can de�ne the calling
program:

A:
c := eavesdrop(0λ , 1λ)
return c

?
= 0λ

Next, we need to compute its output probabilities in the presence of the two libraries.

32

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

A:

c := eavesdrop(0λ , 1λ)
return c

?
= 0λ

�

LΣ
ots-L

eavesdrop(mL ,mR):
k ← {0, 1}λ

c := k & mL

return c

When A is linked to Lots-L, c is
computed as an encryption ofmL =

0λ . No matter what k is, the result
is always all-zeroes. So,

Pr[A � Lots-L ⇒ true] = 1.

A:

c := eavesdrop(0λ , 1λ)
return c

?
= 0λ

�

LΣ
ots-R

eavesdrop(mL, mR):
k ← {0, 1}λ

c := k & mR

return c

When A is linked to Lots-R, c is
computed as an encryption ofmR =

1λ . In other words, c := k & 1λ .
But the bitwise-and of any string k
with all 1s is just k itself. So c is just
equal to k , which was chosen uni-
formly at random. The probability
that a uniformly random c happens
to be all-zeroes is

Pr[A � Lots-R ⇒ true] = 1/2λ .

Since these two probabilities are di�erent, LΣ
ots-L

. LΣ
ots-R

and the scheme does not
have one-time secrecy. �

2.4 How to Prove Security with The Hybrid Technique

We proved that one-time pad satis�es the uniform ciphertexts property (Claim 1.3) by
carefully calculating certain probabilities. This will not be a sustainable strategy as things
get more complicated later in the course. In this section we will introduce a technique for
proving security properties, which usually avoids tedious probability calculations.

Chaining Several Components

Before getting to a security proof, we introduce a convenient lemma. Consider a com-
pound program like A � L1 � L2. Our convention is that subroutine calls only happen
from left to right across the � symbol, so in this example, L1 can make calls to subroutines
in L2, but not vice-versa. Depending on the context, it can sometimes be convenient to
interpret A �L1 � L2 as:

I (A � L1) � L2: a compound calling program linked to L2. After all, A � L1 is a
program that makes calls to the interface of L2.

I or: A�(L1 �L2): A linked to a compound library. After all,A is a program that
makes calls to the interface of (L1 � L2).

The placement of the parentheses does not a�ect the functionality of the overall program,
just like how splitting up a real program into di�erent source �les doesn’t a�ect its func-
tionality.

33

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

In fact, every security proof in this book will have some intermediate steps that involve
compound libraries. We will make heavy use of the following helpful result:

Lemma 2.11

(Chaining)

If Lle� ≡ Lright then, for any library L∗, we have L∗ � Lle� ≡ L
∗ � Lright.

Proof Note that we are comparing L∗ � Lle� and L∗ � Lright as compound libraries. Hence we
consider a calling program A that is linked to either L∗ � Lle� or L∗ � Lright.

Let A be such an arbitrary calling program. We must show that A � (L∗ � Lle�) and
A�(L∗�Lright) have identical output distributions. As mentioned above, we can interpret
A �L∗ � Lle� as a calling programA linked to the library L∗ � Lle�, but also as a calling
program A � L∗ linked to the library Lle�. Since Lle� ≡ Lright, swapping Lle� for Lright

has no e�ect on the output of any calling program. In particular, it has no e�ect when the
calling program happens to be the compound program A �L∗. Hence we have:

Pr[A � (L∗ � Lle�) ⇒ true] = Pr[(A � L∗) � Lle� ⇒ true] (change of perspective)
= Pr[(A � L∗) � Lright ⇒ true] (since Lle� ≡ Lright)
= Pr[A � (L∗ � Lright) ⇒ true]. (change of perspective)

Since A was arbitrary, we have proved the lemma. �

An Example Hybrid Proof

In this section we will prove something about the following scheme, which encrypts twice
with OTP, using independent keys:

Construction 2.12

(“Double OTP”) K = ({0, 1}λ)2

M = {0, 1}λ

C = {0, 1}λ

KeyGen:
k1 ← {0, 1}

λ

k2 ← {0, 1}
λ

return (k1,k2)

Enc

(
(k1,k2),m

)
:

c1 := k1 ⊕m
c2 := k2 ⊕ c1
return c2

Dec

(
(k1,k2), c2

)
:

c1 := k2 ⊕ c2
m := k1 ⊕ c1
returnm

It would not be too hard to directly show that ciphertexts in this scheme are uniformly
distributed, as we did for plain OTP. However, the new hybrid technique will allow us to
leverage what we already know about OTP in an elegant way, and avoid any probability
calculations.

Claim 2.13 Construction 2.12 has one-time uniform ciphertexts (De�nition 2.6).

Proof In terms of libraries, we must show that:

LΣ
ots$-real

ctxt(m):
k1 ← {0, 1}

λ }
KeyGen

k2 ← {0, 1}
λ

c1 := k1 ⊕m
c2 := k2 ⊕ c1

}
Enc

return c2

≡

LΣ
ots$-rand

ctxt(m):
c ← {0, 1}λ

return c

34

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Instead of directly comparing these two libraries, we will introduce some additional li-
braries Lhyb-1, Lhyb-2, Lhyb-3, and show that:

LΣ
ots$-real

≡ Lhyb-1 ≡ Lhyb-2 ≡ Lhyb-3 ≡ L
Σ
ots$-rand

Since the ≡ symbol is transitive, this will achieve our goal.
The intermediate libraries are called hybrids, since they will contain a mix of char-

acteristics from the two “endpoints” of this sequence. These hybrids are chosen so that it
is very easy to show that consecutive libraries in this sequence are interchangeable. The
particular hybrids we have in mind here are:

LΣ
ots$-real

ctxt(m):
k1 ← {0, 1}

λ

k2 ← {0, 1}
λ

c1 := k1 ⊕m
c2 := k2 ⊕ c1
return c2

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-real

ctxt′(m′):
k ← {0, 1}λ

return k ⊕m′︸ ︷︷ ︸
Lhyb-1

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-rand

ctxt′(m′):
c ← {0, 1}λ

return c︸ ︷︷ ︸
Lhyb-2

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 ← {0, 1}

λ

return c2︸ ︷︷ ︸
Lhyb-3

≡

LΣ
ots$-rand

ctxt(m):
c2 ← {0, 1}

λ

return c2

Next, we provide a justi�cation for each “≡” in the expression above. For each pair of
adjacent libraries, we highlight their di�erences below:

LΣ
ots$-real

ctxt(m):
k1 ← {0, 1}

λ

k2 ← {0, 1}
λ

c1 := k1 ⊕m
c2 := k2 ⊕ c1
return c2

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-real

ctxt′(m′):
k ← {0, 1}λ

return k ⊕m′︸ ︷︷ ︸
Lhyb-1

The only di�erence between these two libraries is that the highlighted expressions have
been factored out into a separate subroutine, and some variables have been renamed. In
both libraries, c2 is chosen as the xor of c1 and a uniformly chosen string. These di�erences
make no e�ect on the calling program. Importantly, the subroutine that we have factored
out is exactly the one in the Lotp-real library (apart from renaming the subroutine).

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-real

ctxt′(m′):
k ← {0, 1}λ

return k ⊕m′︸ ︷︷ ︸
Lhyb-1

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-rand

ctxt′(m′):
c ← {0, 1}λ

return c︸ ︷︷ ︸
Lhyb-2

Claim 2.7 says thatLotp-real ≡ Lotp-rand, so Lemma 2.11 says that we can replace an instance
of Lotp-real in a compound library with Lotp-rand, as we have done here. This change will
have no e�ect on the calling program.

35

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-rand

ctxt′(m′):
c ← {0, 1}λ

return c︸ ︷︷ ︸
Lhyb-2

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 ← {0, 1}

λ

return c2︸ ︷︷ ︸
Lhyb-3

The only di�erence between these two libraries is that a subroutine call has been inlined.
This di�erence has no e�ect on the calling program.

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 ← {0, 1}

λ

return c2︸ ︷︷ ︸
Lhyb-3

≡

LΣ
ots$-rand

ctxt(m):
c2 ← {0, 1}

λ

return c2

The only di�erence between these two libraries is that the two highlighted lines have been
removed. But it should be clear that these lines have no e�ect: k1 is used only to compute
c1, which is never used again. Hence, this di�erence has no e�ect on the calling program.

The �nal hybrid is exactly LΣ
ots$-rand

(although with a variable name changed). We
have shown that LΣ

ots$-rand
≡ LΣ

ots$-real
, meaning that this encryption scheme has one-time

uniform ciphertexts. �

Summary of the Hybrid Technique

We have now seen our �rst example of the hybrid technique for security proofs. All secu-
rity proofs in this book use this technique.

I Proving security means showing that two particular libraries, say Lle� and Lright,
are interchangeable.

I Often Lle� and Lright are signi�cantly di�erent, making them hard to compare di-
rectly. To make the comparison more manageable, we can show a sequence of hybrid
libraries, beginning with Lle� and ending with Lright. The idea is to break up the
large “gap” between Lle� and Lright into smaller ones that are easier to justify.

I It is helpful to think of “starting” at Lle�, and then making a sequence of small
modi�cations to it, with the goal of eventually reaching Lright. You must justify
why each modi�cation doesn’t a�ect the calling program (i.e., why the two libraries
before/after your modi�cation are interchangeable).

I As discussed in Section 2.2, simple things like inlining/factoring out subroutines,
changing unused variables, changing unreachable statements, or unrolling loops
are always “allowable” modi�cations in a hybrid proof since they have no e�ect on

36

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

the calling program. As we progress in the course, we will see more kinds of useful
modi�cations.

A Contrasting Example

Usually the boundary between secure and insecure is razor thin. Let’s make a small change
to the previous encryption scheme to illustrate this point. Instead of applying OTP to the
plaintext twice, with independent keys, what would happen if we use the same key?

Construction 2.14

(“dOuB`∃ OTP”)
K = {0, 1}λ

M = {0, 1}λ

C = {0, 1}λ

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m):
c1 := k ⊕m
c2 := k ⊕ c1
return c2

Dec(k, c2):
c1 := k ⊕ c2
m := k ⊕ c1
returnm

You probably noticed that the ciphertext c2 is computed as c2 := k ⊕ (k ⊕m), which is
just a fancy way of saying c2 :=m. There is certainly no way this kind of “double-OTP” is
secure.

For educational purposes, let’s try to repeat the steps of our previous security proof
on this (insecure) scheme and see where things break down. If we wanted to show that
Construction 2.14 has uniform ciphertexts, we would have to show that the following two
libraries are interchangeable:

LΣ
ots$-real

ctxt(m):
k ← {0, 1}λ // KeyGen

c1 := k ⊕m
c2 := k ⊕ c1

}
Enc

return c2

?
≡

LΣ
ots$-rand

ctxt(m):
c ← {0, 1}λ

return c

In the previous hybrid proof, the �rst step was to factor out the statements “k2 ← {0, 1}λ ;
c2 := k2 ⊕ c1” into a separate subroutine, so we could argue that the result of c2 was
uniformly distributed. If we do something analogous with this example, we get:

LΣ
ots$-real

ctxt(m):
k ← {0, 1}λ

c1 := k ⊕m
c2 := k ⊕ c1
return c2

?
≡

ctxt(m):
c1 := k ⊕m // ??
c2 := ctxt′(c1)
return c2

�

Lotp-real

ctxt′(m′):
k ← {0, 1}λ

return k ⊕m′︸ ︷︷ ︸
Lhyb

Do you see the problem? In “Lhyb”, we have tried to move the variable k into Lotp-real.
Since this scope is private, every operation we want to do with k has to be provided by
its container library Lotp-real. But there is a mismatch: Lotp-real only gives us a way to use
k in one xor expression, whereas we need to use the same k in two xor expressions to

37

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

match the behavior of Lots$-real. The compound library Lhyb has an unresolved reference
to k in the line “c1 := k ⊕m,” and therefore doesn’t have the same behavior as Lots$-real.4
This is the step of the security proof that breaks down.

Here’s a more conceptual way to understand what went wrong here. The important
property of OTP is that its ciphertexts look uniform when the key is used to encrypt only one
plaintext. This “double OTP” variant uses OTP in a way that doesn’t ful�ll that condition,
and therefore provides no security guarantee. The previous (successful) proof was able to
factor out some xor’s in terms of Lotp-real without breaking anything, and that’s how we
know the scheme was using OTP in a way that is consistent with its security guarantee.

As you can hopefully see, the process of a security proof provides a way to catch these
kinds of problems. It is very common in a hybrid proof to factor out some statements
in terms of a library from some other security de�nition. This step can only be done
successfully if the underlying cryptography is being used in an appropriate way.

2.5 How to Compare/Contrast Security Definitions

In math, a de�nition can’t really be “wrong,” but it can be “not as useful as you hoped” or
it can “fail to adequately capture your intuition” about the concept.

Security de�nitions are no di�erent. In this chapter we introduced two security de�ni-
tions: one in the “real-vs-random” style and one in the “left-vs-right” style. In this section
we treat the security de�nitions themselves as objects worth studying. Are both of these
security de�nitions “the same,” in some sense? Do they both capture all of our intuitions
about security?

One Security Definition Implies Another

One way to compare/contrast two security de�nitions is to prove that one implies the
other. In other words, if an encryption scheme satis�es de�nition #1, then it also satis�es
de�nition #2.

Theorem 2.15 If an encryption scheme Σ has one-time uniform ciphertexts (De�nition 2.5), then Σ also has
one-time secrecy (De�nition 2.6). In other words:

LΣ
ots$-real

≡ LΣ
ots$-rand

=⇒ LΣ
ots-L
≡ LΣ

ots-R
.

If you are comfortable with what all the terminology means, then the meaning of this
statement is quite simple and unsurprising. “If all plaintextsm induce a uniform distribu-
tion of ciphertexts, then allm induce the same distribution of ciphertexts.”

This fairly straight-forward statement can be proven formally, giving us another ex-
ample of the hybrid proof technique:

Proof We are proving an if-then statement. We want to show that the “then”-part of the state-
ment is true; that is, LΣ

ots-L
≡ LΣ

ots-R
. We are allowed to use the fact that the “if”-part is

true; that is, LΣ
ots$-real

≡ LΣ
ots$-rand

.
4I would say that the library “doesn’t compile” due to a scope/reference error.

38

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

The proof uses the hybrid technique. We will start with the library Lots-L, and make a
small sequence of justi�able changes to it, until �nally reaching Lots-R. Along the way, we
can use the fact that Lots$-real ≡ Lots$-rand. This suggests some “strategy” for the proof: if
we can somehow getLots$-real to appear as a component in one of the hybrid libraries, then
we can replace it with Lots$-rand (or vice-versa), in a way that hopefully makes progress
towards our goal of transforming Lots-L to Lots-R.

Below we list the sequence of hybrid libraries, and justify why each one is interchange-
able with the previous library.

LΣ
ots-L

eavesdrop(mL,mR):
k ← Σ.KeyGen

c ← Σ.Enc(k,mL)

return c

The starting point of our hybrid sequence
is LΣ

ots-L
.

eavesdrop(mL,mR):
c := ctxt(mL)

return c

�

LΣ
ots$-real

ctxt(m):
k ← Σ.KeyGen

c ← Σ.Enc(k,m)
return c

Factoring out a block of statements into a
subroutine makes it possible to write the
library as a compound one, but does not
a�ect its external behavior. Note that the
new subroutine is exactly the LΣ

ots$-real
li-

brary from De�nition 2.5. This was a
strategic choice, because of what hap-
pens next.

eavesdrop(mL,mR):
c := ctxt(mL)

return c

�

LΣ
ots$-rand

ctxt(m):
c ← Σ.C
return c

LΣ
ots$-real

has been replaced with
LΣ

ots$-rand
. The chaining lemma

Lemma 2.11 says that this change
has no e�ect on the library’s behav-
ior, since the two Lots$-? libraries are
interchangeable.

eavesdrop(mL,mR):
c := ctxt(mR)

return c

�

LΣ
ots$-rand

ctxt(m):
c ← Σ.C
return c

The argument to ctxt has been changed
from mL to mR . This has no e�ect on the
library’s behavior since ctxt does not ac-
tually use its argument in these hybrids!

The previous transition is the most important one in the proof, as it gives insight into how
we came up with this particular sequence of hybrids. Looking at the desired endpoints of
our sequence of hybrids — LΣ

ots-L
and LΣ

ots-R
— we see that they di�er only in swapping

mL formR . If we are not comfortable eyeballing things, we’d like a better justi�cation for
why it is “safe” to exchange mL for mR (i.e., why it has no e�ect on the calling program).
However, the uniform ciphertexts property shows thatLΣ

ots-L
in fact has the same behavior

as a library Lhyb-2 that doesn’t use either of mL or mR . In a program that doesn’t use mL
ormR , it is clear that we can switch them!

39

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Having made this crucial change, we can now perform the same sequence of steps, but
in reverse.

eavesdrop(mL,mR):
c := ctxt(mR)

return c

�

LΣ
ots$-real

ctxt(m):
k ← Σ.KeyGen

c ← Σ.Enc(k,m)
return c

LΣ
ots$-rand

has been replaced with
LΣ

ots$-real
. This is another application of

the chaining lemma.

LΣ
ots-R

eavesdrop(mL,mR):
k ← Σ.KeyGen

c ← Σ.Enc(k,mR)

return c

A subroutine call has been inlined, which
has no e�ect on the library’s behavior.
The result is exactly LΣ

ots-R
.

Putting everything together, we showed thatLΣ
ots-L
≡ Lhyb-1 ≡ · · · ≡ Lhyb-4 ≡ L

Σ
ots-R

. This
completes the proof, and we conclude that Σ satis�es the de�nition of one-time secrecy.�

One Security Definition Doesn’t Imply Another

Another way we might compare security de�nitions is to identify any schemes that satisfy
one de�nition without satisfying the other. This helps us understand the boundaries and
“edge cases” of the de�nition.

A word of warning: If we have two security de�nitions that both capture our intuitions
rather well, then any scheme which satis�es one de�nition and not the other is bound to
appear unnatural and contrived. The point is to gain more understanding of the security
de�nitions themselves, and unnatural/contrived schemes are just a means to do that.

Theorem 2.16 There is an encryption scheme that satis�es one-time secrecy (De�nition 2.6) but not one-time
uniform ciphertexts (De�nition 2.5). In other words, one-time secrecy does not necessarily
imply one-time uniform ciphertexts.

Proof One such encryption scheme is given below:

K = {0, 1}λ

M = {0, 1}λ

C = {0, 1}λ+2

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m ∈ {0, 1}λ):
c ′ := k ⊕m
c := c ′‖00
return c

Dec(k, c ∈ {0, 1}λ+2):
c ′ := �rst λ bits of c
return k ⊕ c ′

This scheme is just OTP with the bits 00 added to every ciphertext. The following
facts about the scheme should be believable (and the exercises encourage you to prove
them formally if you would like more practice at that sort of thing):

I This scheme satis�es one-time one-time secrecy, meaning that encryptions of mL
are distributed identically to encryptions ofmR , for anymL andmR of the attacker’s
choice. We can characterize the ciphertext distribution in both cases as “λ uniform

40

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

bits followed by 00.” Think about how you might use the hybrid proof technique to
formally prove that this scheme satis�es one-time secrecy!

I This scheme does not satisfy the one-time uniform ciphertexts property. Its cipher-
texts always end with 00, whereas uniform strings end with 00 with probability
1/4. Think about how you might formallize this observation as a calling program /
distinguisher for the relevant two libraries! �

You might be thinking, surely this can be �xed by rede�ning the ciphertext space as
C as the set of λ + 2-bit strings whose last two bits are 00. This is a clever idea, and
indeed it would work. If we change the de�nition of the ciphertext space C following
this suggestion, then the scheme would satisfy the uniform ciphertexts property (this is
because the Lots$-rand library samples uniformly from whatever C is speci�ed as part of
the encryption scheme).

But this observation raises an interesting point. Isn’t it weird that security hinges
on how narrowly you de�ne the set C of ciphertexts, when C really has no e�ect on
the functionality of encryption? Again, no one really cares about this contrived “OTP +
00” encryption scheme. The point is to illuminate interesting edge cases in the security
de�nition itself!

Exercises

2.1. Below are two calling programsA1,A2 and two librariesL1,L2 with a common interface:

A1

r1 := rand(6)
r2 := rand(6)
return r1

?
= r2

A2

r := rand(6)

return r
?
> 3

L1

rand(n):
r ← Zn
return r

L2

rand(n):
return 0

(a) What is Pr[A1 � L1 ⇒ true]?

(b) What is Pr[A1 � L2 ⇒ true]?

(c) What is Pr[A2 � L1 ⇒ true]?

(d) What is Pr[A2 � L2 ⇒ true]?

2.2. In each problem, a pair of libraries are described. State whether or not Lle� ≡ Lright. If
so, show how they assign identical probabilities to all outcomes. If not, then describe a
successful distinguisher.

Assume that both libraries use the same value of n. Does your answer ever depend on the
choice of n?

In part (a), x denotes the bitwise-complement of x . In part (d), x & y denotes the bitwise-
and of the two strings:

(a)

Lle�

qery() :
x ← {0, 1}n

return x

Lright

qery() :
x ← {0, 1}n

y := x
return y

41

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

(b)

Lle�

qery() :
x ← Zn
return x

Lright

qery() :
x ← Zn
y := 2x % n
return y

(c)

Lle�

qery(c ∈ Zn) :
if c = 0

return null
x ← Zn
return x

Lright

qery(c ∈ Zn) :
if c = 0

return null
x ← Zn
y := cx % n
return y

(d)

Lle�

qery() :
x ← {0, 1}n

y ← {0, 1}n

return x & y

Lright

qery() :
z ← {0, 1}n

return z

2.3. Show that the following libraries are interchangeable:

Lle�

qery(m ∈ {0, 1}λ):
x ← {0, 1}λ

y := x ⊕m
return (x ,y)

Lright

qery(m ∈ {0, 1}λ):
y ← {0, 1}λ

x := y ⊕m
return (x ,y)

Note that x and y are swapped in the �rst two lines, but not in the return statement.

2.4. Show that the following libraries arenot interchangeable. Describe an explicit distinguish-
ing calling program, and compute its output probabilities when linked to both libraries:

Lle�

eavesdrop(mL,mR ∈ {0, 1}
λ):

k ← {0, 1}λ

c := k ⊕mL
return (k, c)

Lright

eavesdrop(mL,mR ∈ {0, 1}
λ):

k ← {0, 1}λ

c := k ⊕mR
return (k, c)

? 2.5. In abstract algebra, a (�nite) group is a �nite set G of items together with an operator ⊗
satisfying the following axioms:

I Closure: for all a,b ∈ G, we have a ⊗ b ∈ G.

I Identity: there is a special identity element e ∈ G that satis�es e ⊗ a = a ⊗ e = a for
all a ∈ G. We typically write “1” rather than e for the identity element.

I Associativity: for all a,b, c ∈ G, we have (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c).

I Inverses: for all a ∈ G, there exists an inverse element b ∈ G such that a ⊗ b = b ⊗ a
is the identity element of G. We typically write “a−1” for the inverse of a.

42

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

De�ne the following encryption scheme in terms of an arbitrary group (G, ⊗):

K = G

M = G

C = G

KeyGen:
k ← G
return k

Enc(k,m):
return k ⊗m

Dec(k, c):
??

(a) Prove that {0, 1}λ is a group with respect to the xor operator. What is the identity
element, and what is the inverse of a value x ∈ {0, 1}λ?

(b) Fill in the details of the Dec algorithm and prove (using the group axioms) that the
scheme satis�es correctness.

(c) Prove that the scheme satis�es one-time secrecy.

2.6. In the proof of Claim 2.9 we considered an attacker / calling program that calls ctxt(0λ).

(a) How does this attacker’s e�ectiveness change if it calls ctxt(1λ) instead?

(b) How does its e�ectiveness change if it calls ctxt(m) for a uniformly chosenm?

2.7. The following scheme encrypts a plaintext by simply reordering its bits, according to the
secret permutation k .

K =

{
permutations
of {1, . . . , λ}

}
M = {0, 1}λ

C = {0, 1}λ

KeyGen:
k ← K
return k

Enc(k,m):
for i := 1 to λ:
ck (i) :=mi

return c1 · · · cλ

Dec(k, c):
for i := 1 to λ:
mi := ck (i)

returnm1 · · ·mλ

Show that the scheme does not have one-time secrecy, by constructing a program that
distinguishes the two relevant libraries from the one-time secrecy de�nition.

2.8. Show that the following encryption scheme does not have one-time secrecy, by construct-
ing a program that distinguishes the two relevant libraries from the one-time secrecy def-
inition.

K = {1, . . . , 9}
M = {1, . . . , 9}
C = Z10

KeyGen:
k ← {1, . . . , 9}
return k

Enc(k,m):
return k ×m % 10

2.9. Consider the following encryption scheme. It supports plaintexts fromM = {0, 1}λ and
ciphertexts from C = {0, 1}2λ . Its keyspace is:

K =
{
k ∈ {0, 1, _}2λ | k contains exactly λ “_” characters

}
To encrypt plaintextm under key k , we “�ll in” the _ characters in k using the bits ofm.

43

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Show that the scheme does not have one-time secrecy, by constructing a program that
distinguishes the two relevant libraries from the one-time secrecy de�nition.

Example: Below is an example encryption ofm = 1101100001.

k = 1__0__11010_1_0_0___

m = 11 01 1 0 0 001

⇒ Enc(k,m) = 11100111010110000001

2.10. Suppose we modify the scheme from the previous problem to �rst permute the bits of m
(as in Exercise 2.7) and then use them to �ll in the “_” characters in a template string. In
other words, the key speci�es a random permutation on positions {1, . . . , λ} as well as a
random template string that is 2λ characters long with λ “_” characters.

Show that even with this modi�cation the scheme does not have one-time secrecy.

? 2.11. Prove that if an encryption scheme Σ has |Σ.K| < |Σ.M| then it cannot satisfy one-
time secrecy. Try to structure your proof as an explicit attack on such a scheme (i.e., a
distinguisher against the appropriate libraries).

The Enc algorithm of one-time pad is deterministic, but our de�nitions of encryption allow
Enc to be randomized (i.e., it may give di�erent outputs when called twice with the same
k and m). For full credit, you should prove the statement even for the case of Enc is
randomized. However, you may assume that Dec is deterministic.

Hint: Thede�nitionofinterchangeabilitydoesnotplaceanyrestrictionontherunningtimeofthedis-
tinguisher/callingprogram.Evenanexhaustivebrute-forceattackwouldbevalid.

2.12. Let Σ denote an encryption scheme where Σ.C ⊆ Σ.M (so that it is possible to use the
scheme to encrypt its own ciphertexts). De�ne Σ2 to be the following nested-encryption
scheme:

K = (Σ.K)2

M = Σ.M
C = Σ.C

KeyGen:
k1 ← Σ.K
k2 ← Σ.K
return (k1,k2)

Enc((k1,k2),m):
c1 := Σ.Enc(k1,m)
c2 := Σ.Enc(k2, c1)
return c2

Dec((k1,k2), c2):
c1 := Σ.Dec(k2, c2)
m := Σ.Dec(k1, c1)
returnm

Prove that if Σ satis�es one-time secrecy, then so does Σ2.

2.13. Let Σ denote an encryption scheme and de�ne Σ2 to be the following encrypt-twice
scheme:

44

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

K = (Σ.K)2

M = Σ.M
C = Σ.C

KeyGen:
k1 ← Σ.K
k2 ← Σ.K
return (k1,k2)

Enc((k1,k2),m):
c1 := Σ.Enc(k1,m)
c2 := Σ.Enc(k2,m)
return (c1, c2)

Dec((k1,k2), (c1, c2)):
m1 := Σ.Dec(k1, c1)
m2 := Σ.Dec(k2, c2)
ifm1 ,m2 return err

returnm1

Prove that if Σ satis�es one-time secrecy, then so does Σ2.

2.14. Prove that an encryption scheme Σ satis�es one-time secrecy if and only if the following
two libraries are interchangeable:

LΣ
le�

foo(m ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k, m)
return c

LΣ
right

foo(m ∈ Σ.M):
k ← Σ.KeyGen

m′← Σ.M

c ← Σ.Enc(k, m′)
return c

Note: you must prove both directions of the if-and-only-if with a hybrid proof.

2.15. Prove that an encryption scheme Σ has one-time secrecy if and only if the following two
libraries are interchangeable:

LΣ
le�

foo(mL,mR ∈ Σ.M):
k1 ← Σ.KeyGen

c1 := Σ.Enc(k1,mL)

k2 ← Σ.KeyGen

c2 := Σ.Enc(k2,mR)

return (c1, c2)

LΣ
right

foo(mL,mR ∈ Σ.M):
k1 ← Σ.KeyGen

c1 := Σ.Enc(k1,mR)

k2 ← Σ.KeyGen

c2 := Σ.Enc(k2,mL)

return (c1, c2)

Note: you must prove both directions of the if-and-only-if with a hybrid proof.

2.16. Formally de�ne a variant of the one-time secrecy de�nition in which the calling program
can obtain two ciphertexts (on chosen plaintexts) encrypted under the same key. Call it
two-time secrecy.

(a) Suppose someone tries to prove that one-time secrecy implies two-time secrecy. Show
where the proof appears to break down.

(b) Describe an attack demonstrating that one-time pad does not satisfy your de�nition
of two-time secrecy.

45

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

2.17. In this problem we consider modifying one-time pad so that the key is not chosen uni-
formly. Let Dλ denote the probability distribution over {0, 1}λ where we choose each bit
of the result to be 0 with probability 0.4 and 1 with probability 0.6.

Let Σ denote one-time pad encryption scheme but with the key sampled from distribution
Dλ rather than the uniform distribution on {0, 1}λ .

(a) Consider the case of λ = 5. A calling program A for the LΣ
ots-? libraries calls

eavesdrop(01011, 10001) and receives the result 01101. What is the probability that
this happens, assuming that A is linked to Lots-L? What about when A is linked to
Lots-R?

(b) Turn this observation into an explicit attack on the one-time secrecy of Σ.

2.18. Complete the proof of Theorem 2.16.

(a) Formally prove (using the hybrid technique) that the scheme in that theorem satis�es
one-time secrecy.

(b) Give a distinguishing calling program to show that the scheme doesn’t satisfy one-time
uniform ciphertexts.

46

3 Secret Sharing

DNS is the system that maps human-memorable Internet domains like irs.gov to
machine-readable IP addresses like 166.123.218.220. If an attacker can masquerade as
the DNS system and convince your computer that irs.gov actually resides at some other
IP address, it might result in a bad day for you.

To protect against these kinds of attacks, a replacement called DNSSEC has been pro-
posed. DNSSEC uses cryptography to make it impossible to falsify a domain-name map-
ping. The cryptography required to authenticate DNS mappings is certainly interesting,
but an even more fundamental question remains: Who can be trusted with the master cryp-
tographic keys to the system? The non-pro�t organization in charge of these kinds of things
(ICANN) has chosen the following system. The master key is split into 7 pieces and dis-
tributed on smart cards to 7 geographically diverse people, who keep them in safe-deposit
boxes.

At least �ve key-holding members of this fellowship would have to meet at a
secure data center in the United States to reboot [DNSSEC] in case of a very
unlikely system collapse.

“If you round up �ve of these guys, they can decrypt [the root key] should the
West Coast fall in the water and the East Coast get hit by a nuclear bomb," [said]
Richard Lamb, program manager for DNSSEC at ICANN.1

How is it possible that any 5 out of the 7 key-holders can reconstruct the master key,
but (presumably) 4 out of the 7 cannot? The solution lies in a cryptographic tool called a
secret-sharing scheme, the topic of this chapter.

3.1 Definitions

We begin by introducing the syntax of a secret-sharing scheme:

Definition 3.1

(Secret-sharing)

A t-out-of-n threshold secret-sharing scheme (TSSS) consists of the following algorithms:

I Share: a randomized algorithm that takes a messagem ∈ M as input, and outputs a
sequence s = (s1, . . . , sn) of shares.

I Reconstruct: a deterministic algorithm that takes a collection of t or more shares as
input, and outputs a message.

We callM the message space of the scheme, and t its threshold. As usual, we refer to the
parameters/components of a scheme Σ as Σ.t , Σ.n, Σ.M, Σ.Share, Σ.Reconstruct.

1
h�p://www.livescience.com/6791-internet-key-holders-insurance-cyber-a�ack.html

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://www.livescience.com/6791-internet-key-holders-insurance-cyber-attack.html
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

In secret-sharing, we number the users as {1, . . . ,n}, with user i receiving share si . Let
U ⊆ {1, . . . ,n} be a subset of users. Then {si | i ∈ U } refers to the set of shares belonging
to users U . If |U | > t , we say that U is authorized; otherwise it is unauthorized. The
goal of secret sharing is for all authorized sets of users/shares to be able to reconstruct the
secret, while all unauthorized sets learn nothing.

Definition 3.2

(TSSS correctness)

A t-out-of-n TSSS satis�es correctness if, for all authorized setsU ⊆ {1, . . . ,n} (i.e., |U | > t)
and for all s ← Share(m), we have Reconstruct({si | i ∈ U }) =m.

m

Share

s1 s2 s3 s4 s5 · · · sn

Reconstruct

m

n shares

any t of the shares

Security Definition

We’d like a security guarantee that says something like:

if you know only an unauthorized set of shares, then you learn no information
about the choice of secret message.

To translate this informal statement into a formal security de�nition, we de�ne two li-
braries that allow the calling program to learn a set of shares (for an unauthorized set),
and that di�er only in which secret is shared. If the two libraries are interchangeable,
then we conclude that seeing an unauthorized set of shares leaks no information about
the choice of secret message. The de�nition looks like this:

Definition 3.3

(TSSS security)

Let Σ be a threshold secret-sharing scheme. We say that Σ is secure ifLΣ
tsss-L

≡ LΣ
tsss-R

, where:

LΣ
tsss-L

share(mL,mR ∈ Σ.M,U):
if |U | > Σ.t : return err

s ← Σ.Share(mL)

return {si | i ∈ U }

LΣ
tsss-R

share(mL,mR ∈ Σ.M,U):
if |U | > Σ.t : return err

s ← Σ.Share(mR)

return {si | i ∈ U }

In an attempt to keep the notation uncluttered, we have not written the type of the argument
U , which isU ⊆ {1, . . . , Σ.n}.

48

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Discussion & Pitfalls

I Similar to the de�nition of one-time secrecy of encryption, we let the calling pro-
gram choose the two secret messages that will be shared. As before, this models an
attack scenario in which the adversary has partial knowledge or in�uence on the
secretm being shared.

I The calling program also chooses the set U of users’ shares to obtain. The libraries
make it impossible for the calling program to obtain the shares of an authorized set
(returning err in that case). This does not mean that a user is never allowed to dis-
tribute an authorized number of shares (this would be strange indeed, since it would
make any future reconstruction impossible). It just means that we want a security
de�nition that says something about an attacker who sees only an unauthorized set
of shares, so we formalize security in terms of libraries with this restriction.

I Consider a 6-out-of-10 threshold secret-sharing scheme. With the libraries above,
the calling program can receive the shares of users {1, . . . , 5} (an unauthorized set)
in one call to share, and then receive the shares of users {6, . . . , 10} in another call.
It might seem like the calling program can then combine these shares to reconstruct
the secret (if the same message was shared in both calls). However, this is not the
case because these two sets of shares came from two independent executions of the
Share algorithm. Shares generated by one call to Share should not be expected to
function with shares generated by another call, even if both calls to Share used the
same secret message.

I Recall that in our style of de�ning security using libraries, it is only the internal
di�erences between the libraries that must be hidden. Anything that is the same
between the two libraries need not be hidden. One thing that is the same for the two
libraries here is the fact that they output the shares belonging to the same set of users
U . This security de�nition does not require shares to hide which user they belong
to. Indeed, you can modify a secret-sharing scheme so that each user’s identity
is appended to his/her corresponding share, and the result would still satisfy the
security de�nition above.

I Just like the encryption de�nition does not address the problem of key distribution,
the secret-sharing de�nition does not address the problem of who should run the
Share algorithm (if its input m is so secret that it cannot be entrusted to any sin-
gle person), or how the shares should be delivered to the n di�erent users. Those
concerns are considered out of scope by the problem of secret-sharing (although we
later discuss clever approaches to the �rst problem). Rather, the focus is simply on
whether it is even possible to encode data in such a way that an unauthorized set of
shares gives no information about the secret, while any authorized set completely
reveals the secret.

An Insecure Approach

One way to understand the security of secret sharing is to see an example of an “obvious”
but insecure approach for secret sharing, and study why it is insecure.

49

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Let’s consider a 5-out-of-5 secret-sharing scheme. This means we want to split a secret
into 5 pieces so that any 4 of the pieces leak nothing. One way you might think to do this
is to literally chop up the secret into 5 pieces. For example, if the secret is 500 bits, you
might give the �rst 100 bits to user 1, the second 100 bits to user 2, and so on.

Construction 3.4

(Insecure TSSS)
M = {0, 1}500

t = 5
n = 5

Share(m):
splitm intom = s1‖ · · · ‖s5,

where each |si | = 100
return (s1, . . . , s5)

Reconstruct(s1, . . . , s5):
return s1‖ · · · ‖s5

It is true that the secret can be constructed by concatenating all 5 shares, and so this
construction satis�es the correctness property. (The only authorized set is the set of all 5
users, so we write Reconstruct to expect all 5 shares.)

However, the scheme is insecure (as promised). Suppose you have even just 1 share.
It is true that you don’t know the secret in its entirety, but the security de�nition (for 5-
out-of-5 secret sharing) demands that a single share reveals nothing about the secret. Of
course knowing 100 bits of something is not the same as than knowing nothing about it.

We can leverage this observation to make a more formal attack on the scheme, in the
form of a distinguisher between the two Ltsss-? libraries. As an extreme case, we can
distinguish between shares of an all-0 secret and shares of an all-1 secret:

A

s1 := share(0500, 1500, {1})
return s1

?
= 0100

Let’s link this calling program to both of the Ltsss-? libraries and see what happens:

A

s1 := share(0500, 1500, {1})
return s1

?
= 0100

�

Ltsss-L

share(mL,mR ,U):
if |U | > t : return err

s ← Share(mL)

return {si | i ∈ U }

When A is linked to Ltsss-L, it
receives a share of 0500, which
will itself be a string of all ze-
roes. In this case, A outputs 1
with probability 1.

A

s1 := share(0500, 1500, {1})
return s1

?
= 0100

�

Ltsss-R

share(mL,mR ,U):
if |U | > t : return err

s ← Share(mR)

return {si | i ∈ U }

When A is linked to Ltsss-R, it
receives a share of 1500 which
will be a string of all ones. In this
case,A outputs 1 with probabil-
ity 0.

We have constructed a calling program which behaves very di�erently (indeed, as
di�erently as possible) in the presence of the two libraries. Hence, this secret-sharing
scheme is not secure.

Hopefully this example demonstrates one of the main challenges (and amazing things)
about secret-sharing schemes. It is easy to reveal information about the secret gradually as

50

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

more shares are obtained, like in this insecure example. However, the security de�nition
of secret sharing is that the shares must leak absolutely no information about the secret,
until the number of shares passes the threshold value.

3.2 A Simple 2-out-of-2 Scheme

Believe it or not, we have already seen a simple secret-sharing scheme! In fact, it might
even be best to think of one-time pad as the simplest secret-sharing scheme.

Construction 3.5

(2-out-of-2 TSSS)
M = {0, 1}`

t = 2
n = 2

Share(m):
s1 ← {0, 1}

`

s2 := s1 ⊕m
return (s1, s2)

Reconstruct(s1, s2):
return s1 ⊕ s2

Since it’s a 2-out-of-2 scheme, the only authorized set of users is {1, 2}, so Reconstruct is
written to expect both shares s1 and s2 as its inputs. Correctness follows easily from what
we’ve already learned about the properties of xor.

Example If we want to share the stringm = 1101010001 then the Share algorithm might choose

s1 := 0110000011

s2 := s1 ⊕m
= 0110000011 ⊕ 1101010001 = 1011010010.

Then the secret can be reconstructed by xoring the two shares together, via:

s1 ⊕ s2 = 0110000011 ⊕ 1011010010 = 1101010001 =m.

Remember that this example shows just one possible execution of Share(1101010001), but
Share is a randomized algorithm and many other values of (s1, s2) are possible.

Theorem 3.6 Construction 3.5 is a secure 2-out-of-2 threshold secret-sharing scheme.

Proof Let Σ denote Construction 3.5. We will show that LΣ
tsss-L

≡ LΣ
tsss-R

using a hybrid proof.

LΣ
tsss-L

:

LΣ
tsss-L

share(mL,mR ,U):
if |U | > 2: return err

s1 ← {0, 1}
`

s2 := s1 ⊕mL

return {si | i ∈ U }

As usual, the starting point is
LΣ

tsss-L
, shown here with the

details of the secret-sharing
scheme �lled in (and the
types of the subroutine ar-
guments omitted to reduce
clutter).

51

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕mL
return {s1}

elsif U = {2}:
s1 ← {0, 1}

`

s2 := s1 ⊕mL
return {s2}

else return ∅

It has no e�ect on the li-
brary’s behavior if we dupli-
cate the main body of the
library into 3 branches of
a new if-statement. The
reason for doing so is that
the scheme generates s1 and
s2 di�erently. This means
that our proof will eventu-
ally handle the 3 di�erent
unauthorized sets ({1}, {2},
and ∅) in fundamentally dif-
ferent ways.

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕ mR

return {s1}
elsif U = {2}:
s1 ← {0, 1}

`

s2 := s1 ⊕mL
return {s2}

else return ∅

The de�nition of s2 has
been changed in the �rst
if-branch. This has no e�ect
on the library’s behavior
since s2 is never actually
used in this branch.

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕mR
return {s1}

elsif U = {2}:
s2 ← eavesdrop(mL,mR)

return {s2}
else return ∅

�

LOTP

ots-L

eavesdrop(mL,mR):
k ← {0, 1}`

c := k ⊕mL
return c

Recognizing the second
branch of the if-statement as
a one-time pad encryption
(of mL under key s1), we
factor out the generation
of s2 in terms of the library
LOTP

ots-L
from the one-time

secrecy de�nition. This has
no e�ect on the library’s
behavior. Importantly, the
subroutine in LOTP

ots-L
expects

two arguments, so that is
what we must pass. We
choose to pass mL and mR
for reasons that should
become clear very soon.

52

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕mR
return {s1}

elsif U = {2}:
s2 ← eavesdrop(mL,mR)

return {s2}
else return ∅

�

LOTP

ots-R

eavesdrop(mL,mR):
k ← {0, 1}`

c := k ⊕ mR

return c

We have replacedLOTP

ots-L
with

LOTP

ots-R
. From the one-time se-

crecy of one-time pad (and
the composition lemma), this
change has no e�ect on the
library’s behavior.

share(mL,mR ,U):
if |U | > 2: return err

if U = {1}:
s1 ← {0, 1}

`

s2 := s1 ⊕mR
return {s1}

elsif U = {2}:
s1 ← {0, 1}

`

s2 := s1 ⊕mR

return {s2}
else return ∅

A subroutine has been in-
lined; no e�ect on the li-
brary’s behavior.

LΣ
tsss-R

:

LΣ
tsss-R

share(mL,mR ,U):
if |U | > 2: return err

s1 ← {0, 1}
`

s2 := s1 ⊕mR
return {si | i ∈ U }

The code has been sim-
pli�ed. Speci�cally, the
branches of the if-statement
can all be uni�ed, with no ef-
fect on the library’s behav-
ior. The result is LΣ

tsss-R
.

We showed that LΣ
tsss-L

≡ Lhyb-1 ≡ · · · ≡ Lhyb-5 ≡ L
Σ
tsss-R

, and so the secret-sharing
scheme is secure. �

We in fact proved a slightly more general statement. The only property of one-time pad
we used was its one-time secrecy. Substituting one-time pad for any other one-time secret
encryption scheme would still allow the same proof to go through. So we actually proved
the following:

Theorem 3.7 If Σ is an encryption scheme with one-time secrecy, then the following 2-out-of-2 threshold
secret-sharing scheme S is secure:

53

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

M = Σ.M
t = 2
n = 2

Share(m):
s1 ← Σ.KeyGen

s2 ← Σ.Enc(s1,m)
return (s1, s2)

Reconstruct(s1, s2):
return Σ.Dec(s1, s2)

3.3 Polynomial Interpolation

You are probably familiar with the fact that two points determine a line (in Euclidean
geometry). It is also true that 3 points determine a parabola, and so on. The next secret-
sharing scheme we discuss is based on the following principle:

d + 1 points determine a unique degree-d polynomial.

A note on terminology: If f is a polynomial that can be written as f (x) =
∑d

i=0 fix
i ,

then we say that f is a degree-d polynomial. It would be more technically correct to say
that the degree of f is at most d since we allow the leading coe�cient fd to be zero. For
convenience, we’ll stick to saying “degree-d” to mean “degree at most d .”

Polynomials Over the Reals

Theorem 3.8

(Poly Interpolation)

Let {(x1,y1), . . . , (xd+1,yd+1)} ⊆ R2 be a set of points whose xi values are all distinct. Then
there is a unique degree-d polynomial f with real coe�cients that satis�es yi = f (xi) for
all i .

Proof To start, consider the following polynomial:

`1(x) =
(x − x2)(x − x3) · · · (x − xd+1)

(x1 − x2)(x1 − x3) · · · (x1 − xd+1)
.

The notation is potentially confusing. `1 is a polynomial with formal variable x (written
in bold). The non-bold xi values are just plain numbers (scalars), given in the theorem
statement. Therefore the numerator in `1 is a degree-d polynomial in x . The denominator
is just a scalar, and since all of the xi ’s are distinct, we are not dividing by zero. Overall,
`1 is a degree-d polynomial.

What happens when we evaluate `1 at one of the special xi values?

I Evaluating `1(x1) makes the numerator and denominator the same, so `1(x1) = 1.

I Evaluating `1(xi) for i , 1 leads to a term (xi − xi) in the numerator, so `1(xi) = 0.

Of course, `1 can be evaluated at any point (not just the special points x1, . . . ,xd+1), but
we don’t care about what happens in those cases.

We can similarly de�ne other polynomials `j :

`j (x) =
(x − x1) · · · (x − x j−1)(x − x j+1) · · · (x − xd+1)

(x j − x1) · · · (x j − x j−1)(x j − x j+1) · · · (x j − xd+1)
.

The pattern is that the numerator is “missing” the term (x − x j) and the denominator is
missing the term (x j −x j), because we don’t want a zero in the denominator. Polynomials

54

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

of this kind are called LaGrange polynomials. They are each degree-d polynomials, and
they satisfy the property:

`j (xi) =

{
1 if i = j

0 if i , j

Now consider the following polynomial:

f (x) = y1`1(x) + y2`2(x) + · · · + yd+1`d+1(x).

Note that f is a degree-d polynomial since it is the sum of degree-d polynomials (again,
the yi values are just scalars).

What happens when we evaluate f on one of the special xi values? Since `i (xi) = 1
and `j (xi) = 0 for j , i , we get:

f (xi) = y1`1(xi) + · · · + yi`i (xi) + · · · + yd+1`d+1(xi)

= y1 · 0 + · · · + yi · 1 + · · · + yd+1 · 0
= yi

So f (xi) = yi for every xi , which is what we wanted. This shows that there is some
degree-d polynomial with this property.

Now let’s argue that this f is unique. Suppose there are two degree-d polynomials
f and f ′ such that f (xi) = f ′(xi) = yi for i ∈ {1, . . . ,d + 1}. Then the polynomial
д(x) = f (x) − f ′(x) also is degree-d , and it satis�es д(xi) = 0 for all i . In other words,
each xi is a root of д, so д has at least d + 1 roots. But the only degree-d polynomial with
d + 1 roots is the identically-zero polynomial д(x) = 0. If д(x) = 0 then f = f ′. In other
words, any degree-d polynomial f ′ that satis�es f ′(xi) = yi must be equal to f . So f is
the unique polynomial with this property. �

Example Let’s �gure out the degree-3 polynomial that passes through the points
(3, 1), (4, 1), (5, 9), (2, 6):

i 1 2 3 4
xi 3 4 5 2
yi 1 1 9 6

First, let’s construct the appropriate LaGrange polynomials:

`1(x) =
(x − x2)(x − x3)(x − x4)

(x1 − x2)(x1 − x3)(x1 − x4)
=
(x − 4)(x − 5)(x − 2)
(3 − 4)(3 − 5)(3 − 2)

=
x3 − 11x2 + 38x − 40

2

`2(x) =
(x − x1)(x − x3)(x − x4)

(x2 − x1)(x2 − x3)(x2 − x4)
=
(x − 3)(x − 5)(x − 2)
(4 − 3)(4 − 5)(4 − 2)

=
x3 − 10x2 + 31x − 30

−2

`3(x) =
(x − x1)(x − x2)(x − x4)

(x3 − x1)(x3 − x2)(x3 − x4)
=
(x − 3)(x − 4)(x − 2)
(5 − 3)(5 − 4)(5 − 2)

=
x3 − 9x2 + 26x − 24

6

`4(x) =
(x − x1)(x − x2)(x − x3)

(x4 − x1)(x4 − x2)(x4 − x3)
=
(x − 3)(x − 4)(x − 5)
(2 − 3)(2 − 4)(2 − 5)

=
x3 − 12x2 + 47x − 60

−6

55

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

As a sanity check, notice how:

`1(x1) = `1(3) =
33 − 11 · 32 + 38 · 3 − 40

2
=

2
2
= 1

`1(x2) = `1(4) =
43 − 11 · 42 + 38 · 4 − 40

2
=

0
2
= 0

It will make the next step easier if we rewrite all LaGrange polynomials to have the same
denominator 6:

`1(x) =
3x3 − 33x2 + 114x − 120

6
`3(x) =

x3 − 9x2 + 26x − 24
6

`2(x) =
−3x3 + 30x2 − 93x + 90

6
`4(x) =

−x3 + 12x2 − 47x + 60
6

Our desired polynomial is

f (x) = y1 · `1(x) + y2 · `2(x) + y3 · `3(x) + y4 · `4(x)

= 1 · `1(x) + 1 · `2(x) + 9 · `3(x) + 6 · `4(x)

=
1
6

©­­­«
1 ·

(
3x3 − 33x2 + 114x − 120

)
+ 1 ·

(
− 3x3 + 30x2 − 93x + 90

)
+ 9 ·

(
x3 − 9x2 + 26x − 24

)
+ 6 ·

(
− x3 + 12x2 − 47x + 60

)
ª®®®¬

=
1
6

(
3x3 − 12x2 − 27x + 114

)
=
x3

2
− 2x2 −

9x
2
+ 19

And indeed, f gives the correct values:

0 1 2 3 4 5 6
0
2
4
6
8
10
12
14
16

(3,1)(4,1)

(5,9)

(2,6)

f (x1) = f (3) =
33

2
− 2 · 32 −

9 · 3
2
+ 19 = 1 = y1

f (x2) = f (4) =
43

2
− 2 · 42 −

9 · 4
2
+ 19 = 1 = y2

f (x3) = f (5) =
53

2
− 2 · 52 −

9 · 5
2
+ 19 = 9 = y3

f (x4) = f (2) =
23

2
− 2 · 22 −

9 · 2
2
+ 19 = 6 = y4

Polynomials mod p

We will see a secret-sharing scheme based on polynomials, whose Share algorithm must
choose a polynomial with uniformly random coe�cients. Since we cannot have a uniform
distribution over the real numbers, we must instead consider polynomials with coe�cients
in Zp .

It is still true that d + 1 points determine a unique degree-d polynomial when working
modulo p, if p is a prime!

56

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Theorem 3.9

(Interp mod p)

Let p be a prime, and let {(x1,y1), . . . , (xd+1,yd+1)} ⊆ (Zp)
2
be a set of points whosexi val-

ues are all distinct. Then there is a unique degree-d polynomial f with coe�cients from Zp
that satis�es yi ≡p f (xi) for all i .

The proof is the same as the one for Theorem 3.8, if you interpret all arithmetic modulo
p. Addition, subtraction, and multiplication mod p are straight forward; the only non-
trivial question is how to interpret “division mod p,” which is necessary in the de�nition
of the `j polynomials. For now, just accept that you can always “divide” mod p (except by
zero) when p is a prime. If you are interested in how division mod p works, look ahead to
Chapter 13.

We can also generalize the observation that d+1 points uniquely determine a degree-d
polynomial. It turns out that:

For any k points, there are exactly pd+1−k polynomials of degree-d that hit
those points, mod p.

Note how when k = d + 1, the statement says that there is just a single polynomial hitting
the points.

Corollary 3.10

(# of polys)

Let P = {(x1,y1), . . . , (xk ,yk)} ⊆ (Zp)2 be a set of points whose xi values are distinct. Let d
satisfy k 6 d + 1 and p > d . Then the number of degree-d polynomials f with coe�cients in
Zp that satisfy the condition yi ≡p f (xi) for all i is exactly pd+1−k .

Proof The proof is by induction on the value d + 1−k . The base case is when d + 1−k = 0. Then
we have k = d + 1 distinct points, and Theorem 3.9 says that there is a unique polynomial
satisfying the condition. Since pd+1−k = p0 = 1, the base case is true.

For the inductive case, we have k 6 d points in P. Let x∗ ∈ Zp be a value that does
not appear as one of the xi ’s. Every polynomial must give some value when evaluated at
x∗. So,

[# of degree-d polynomials passing through points in P]

=
∑
y∗∈Zp

[# of degree-d polynomials passing through points in P ∪ {(x∗,y∗)}]

(?)
=

∑
y∗∈Zp

pd+1−(k+1)

= p ·
(
pd+1−k−1

)
= pd+1−k

The equality marked (?) follows from the inductive hypothesis, since each of the terms
involves a polynomial passing through a speci�ed set of k + 1 points with distinct x-
coordinates. �

57

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Example

0 1 2 3 4 5 6 7 8 9 10 11
0

11

22

33

44

55

66

77

88

99

110

121

132

143

154

165

176

(0,7)
(1,12)

(2,19)

(3,28)

(4,39)

(5,52)

(6,67)

(7,84)

(8,103)

(9,124)

(10,147)
What does a “polynomial mod p” look
like? Consider an example degree-2 poly-
nomial:

f (x) = x2 + 4x + 7

When we plot this polynomial over the real
numbers (the picture on the left), we get a
familiar parabola.

Let’s see what this polynomial “looks like”
modulo 11 (i.e., in Z11). Working mod 11
means to “wrap around” every time the
polynomial crosses over a multiple of 11
along the y-axis. This results in the blue
plot below:

0 1 2 3 4 5 6 7 8 9 10 11
0

11

This is a picture of a mod-11 parabola. In
fact, since we care only about Z11 inputs to
f , you could rightfully say that just the 11
highlighted points alone (not the blue
curve) are a picture of a mod-11 parabola.

3.4 Shamir Secret Sharing

Part of the challenge in designing a secret-sharing scheme is making sure that any autho-
rized set of users can reconstruct the secret. We have just seen that any d + 1 points on
a degree-d polynomial are enough to uniquely reconstruct the polynomial. So a natural
approach for secret sharing is to let each user’s share be a point on a polynomial.

That’s exactly what Shamir secret sharing does. To share a secret m ∈ Zp with
threshold t , �rst choose a degree-(t − 1) polynomial f that satis�es f (0) ≡p m, with all

58

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

other coe�cients chosen uniformly in Zp . The ith user receives the point (i, f (i) % p) on
the polynomial. The interpolation theorem says that any t of the shares can uniquely
determine the polynomial f , and hence recover the secret f (0).

Construction 3.11

(Shamir SSS)

M = Zp
p : prime
n < p
t 6 n

Share(m):
f1, . . . , ft−1 ← Zp
f (x) :=m +

∑t−1
j=1 fjx

j

for i = 1 to n:
si := (i, f (i) % p)

return s = (s1, . . . , sn)

Reconstruct({si | i ∈ U }):
f (x) := unique degree-(t − 1)

polynomial mod p passing
through points {si | i ∈ U }

return f (0)

Correctness follows from the interpolation theorem.

Example Here is an example of 3-out-of-5 secret sharing over Z11 (so p = 11). Suppose the secret being
shared is m = 7 ∈ Z11. The Share algorithm chooses a random degree-2 polynomial with
constant coe�cient 7.

Let’s say that the remaining two coe�cients are chosen as f2 = 1 and f1 = 4, resulting in
the following polynomial:

f (x) = 1 x2 + 4 x + 7

This is the same polynomial illustrated in the previous example:

0 1 2 3 4 5 6 7 8 9 10 11
0

11

For each user i ∈ {1, . . . , 5}, we distribute the share (i, f (i) % 11). These shares correspond to
the highlighted points in the mod-11 picture above.

user (i) f (i) share (i, f (i) % 11)
1 f (1) = 12 (1, 1)
2 f (2) = 19 (2, 8)
3 f (3) = 28 (3, 6)
4 f (4) = 39 (4, 6)
5 f (5) = 52 (5, 8)

Remember that this example illustrates just one possible execution of Share. Because Share

is a randomized algorithm, there are many valid sharings of the same secret (induced by
di�erent choices of the highlighted coe�cients in f).

59

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Security

To show the security of Shamir secret sharing, we �rst show a convenient lemma about
the distribution of shares in an unauthorized set:

Lemma 3.12 Let p be a prime and de�ne the following two libraries:

Lshamir-real

poly(m, t ,U ⊆ {1, . . . ,p}):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=m +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

Lshamir-rand

poly(m, t ,U ⊆ {1, . . . ,p}):
if |U | > t : return err

for i ∈ U :
yi ← Zp
si := (i,yi)

return {si | i ∈ U }

Lshamir-real chooses a random degree-(t − 1) polynomial that passes through the point (0,m),
then evaluates it at the given x-coordinates (speci�ed by U). Lshamir-rand simply gives uni-
formly chosen points, unrelated to any polynomial.

The claim is that these libraries are interchangeable: Lshamir-real ≡ Lshamir-rand.

Proof Fix a messagem ∈ Zp , �x setU of users with |U | < t , and for each i ∈ U �x a valueyi ∈ Zp .
We wish to consider the probability that a call to poly(m, t ,U) outputs {(i,yi) | i ∈ U }, in
each of the two libraries.2

In library Lshamir-real, the subroutine chooses a random degree-(t − 1) polynomial f
such that f (0) ≡p m. From Corollary 3.10, we know there are pt−1 such polynomials.

In order for poly to output points consistent with our chosen yi ’s, the library must
have chosen one of the polynomials that passes through (0,m) and all of the {(i,yi) | i ∈
U } points. The library must have chosen one of the polynomials that passes through a
speci�c choice of |U | + 1 points, and Corollary 3.10 tells us that there are pt−(|U |+1) such
polynomials.

The only way for poly to give our desired output is for it to choose one of thept−(|U |+1)
“good” polynomials, out of the pt−1 possibilities. This happens with probability exactly

pt−|U |−1

pt−1
= p−|U |

Now, in library Lshamir-rand, poly chooses its |U | output values uniformly in Zp . There
are p |U | ways to choose them. But only one of those ways causes poly(m, t ,U) to output
our speci�c choice of {(i,yi) | i ∈ U }. Hence, the probability of receiving this output is
p−|U | .

For all possible inputs to poly, both libraries assign the same probability to every
possible output. Hence, the libraries are interchangeable. �

Theorem 3.13 Shamir’s secret-sharing scheme (Construction 3.11) is secure according to De�nition 3.3.

2This is similar to how, in Claim 2.7, we �xed a particular m and c and computed the probability that
eavesdrop(m) = c .

60

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

Proof Let S denote the Shamir secret-sharing scheme. We prove that LS
tsss-L

≡ LS
tsss-R

via a
hybrid argument.

LS
tsss-L

:

LS
tsss-L

share(mL,mR ,U):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=mL +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

Our starting point is LS
tsss-L

,
shown here with the details of
Shamir secret-sharing �lled in.

share(mL,mR ,U):
return poly(mL, t ,U)

�

Lshamir-real

poly(m, t ,U):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=m +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

Almost the entire body of
the share subroutine has
been factored out in terms
of the Lshamir-real library
de�ned above. The only thing
remaining is the “choice” of
whether to share mL or mR .
Restructuring the code in
this way has no e�ect on the
library’s behavior.

share(mL,mR ,U):
return poly(mL, t ,U)

�

Lshamir-rand

poly(m, t ,U):
if |U | > t : return err

for i ∈ U :
yi ← Zp
si := (i,yi)

return {si | i ∈ U }

By Lemma 3.12, we can replace
Lshamir-real with Lshamir-rand,
having no e�ect on the li-
brary’s behavior.

share(mL,mR ,U):
return poly(mR , t ,U)

�

Lshamir-rand

poly(m, t ,U):
if |U | > t : return err

for i ∈ U :
yi ← Zp
si := (i,yi)

return {si | i ∈ U }

The argument to poly has
been changed from mL to mR .
This has no e�ect on the li-
brary’s behavior, since poly is
actually ignoring its argument
in these hybrids.

61

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

share(mL,mR ,U):
return poly(mR , t ,U)

�

Lshamir-real

poly(m, t ,U):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=m +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

Applying the same steps
in reverse, we can replace
Lshamir-rand with Lshamir-real,
having no e�ect on the
library’s behavior.

LS
tsss-R

:

LS
tsss-R

share(mL,mR ,U):
if |U | > t : return err

f1, . . . , ft−1 ← Zp
f (x) :=mR +

∑t−1
j=1 fjx

j

for i ∈ U :
si := (i, f (i) % p)

return {si | i ∈ U }

A subroutine has been inlined,
which has no e�ect on the li-
brary’s behavior. The result-
ing library is LS

tsss-R
.

We showed that LS
tsss-L

≡ Lhyb-1 ≡ · · · ≡ Lhyb-4 ≡ L
S
tsss-R

, so Shamir’s secret sharing
scheme is secure. �

3.5? Visual Secret Sharing

Here is a fun variant of 2-out-of-2 secret-sharing called visual secret sharing. In this
variant, both the secret and the shares are black-and-white images. We require the same
security property as traditional secret-sharing — that is, a single share (image) by itself re-
veals no information about the secret (image). What makes visual secret sharing di�erent
is that we require the reconstruction procedure to be done visually.

More speci�cally, each share should be printed on transparent sheets. When the two
shares are stacked on top of each other, the secret image is revealed visually. We will dis-
cuss a simple visual secret sharing scheme that is inspired by the following observations:

when is stacked on top of , the result is

when is stacked on top of , the result is

when is stacked on top of , the result is

when is stacked on top of , the result is

Importantly, when stacking shares on top of each other in the �rst two cases, the result is
a 2× 2 block that is half-black, half-white (let’s call it “gray”); while in the other cases the
result is completely black.

The idea is to process each pixel of the source image independently, and to encode
each pixel as a 2×2 block of pixels in each of the shares. A white pixel should be shared in

62

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

a way that the two shares stack to form a “gray” 2 × 2 block, while a black pixel is shared
in a way that results in a black 2 × 2 block.

More formally:

Construction 3.14 Share(m):
initialize empty images s1, s2, with dimensions twice that ofm
for each position (i, j) inm:

randomly choose b1 ← { , }
ifm[i, j] is a white pixel: set b2 := b1
ifm[i, j] is a black pixel: set b2 to the “opposite” of b1 (i.e., { , } \ {b1})
add 2 × 2 block b1 to image s1 at position (2i, 2j)
add 2 × 2 block b2 to image s2 at position (2i, 2j)

return (s1, s2)

It is not hard to see that share s1 leaks no information about the secret imagem, because
it consists of uniformly chosen 2 × 2 blocks. In the exercises you are asked to prove that
s2 also individually leaks nothing about the secret image.

Note that whenever the source pixel is white, the two shares have identical 2×2 blocks
(so that when stacked, they make a “gray” block). Whenever a source pixel is black, the
two shares have opposite blocks, so stack to make a black block.

Example

source image

share #1

share #2

stacked shares

Exercises

3.1. Generalize Construction 3.5 to be an n-out-of-n secret-sharing scheme, and prove that
your scheme is correct and secure.

3.2. Prove Theorem 3.7.

3.3. Fill in the details of the following alternative proof of Theorem 3.6: Starting with Ltsss-L,
apply the �rst step of the proof as before, to duplicate the main body into 3 branches of a
new if-statement. Then apply Exercise 2.3 to the second branch of the if-statement. Argue
thatmL can be replaced withmR and complete the proof.

63

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

3.4. Suppose T is a �xed (publicly known) invertible n × n matrix over Zp , where p is a prime.

(a) Show that the following two libraries are interchangeable:

Lle�

qery():
r ← (Zp)n

return r

;

Lright

qery():
r ← (Zp)n

return T × r

.

(b) Show that the following two libraries are interchangeable:

Lle�

qery(v ∈ (Zp)n):
r ← (Zp)n

z := v +Tr
return z

;

Lright

qery(v ∈ (Zp)n):
z ← (Zp)n

return z

.

3.5. Consider a t-out-of-n threshold secret sharing scheme withM = {0, 1}` , and where each
user’s share is also a string of bits. Prove that if the scheme is secure, then every user’s
share must be at least ` bits long.

Hint:

Provethecontrapositive.Supposethe�rstuser’sshareislessthan`bits(andthatthisfactisknown
toeveryone).Showhowusers2throughtcanviolatesecuritybyenumeratingallpossibilitiesfor
the�rstuser’sshare.Giveyouranswerintheformofandistinguisherontherelevantlibraries.

3.6. n users have shared two secrets using Shamir secret sharing. User i has a share si = (i,yi)
of the secret m, and a share s ′i = (i,y

′
i) of the secret m′. Both sets of shares use the same

prime modulus p.

Suppose each user i locally computes zi = (yi + y ′i) % p.

(a) Prove that if the shares ofm and shares ofm′ had the same threshold, then the resulting
{(i, zi) | i 6 n} are a valid secret-sharing of the secretm +m′.

(b) Describe what the users get when the shares ofm andm′ had di�erent thresholds (say,
t and t ′, respectively).

3.7. Suppose there are 5 people on a committee: Alice (president), Bob, Charlie, David, Eve.
Suggest how they can securely share a secret so that it can only be opened by:

I Alice and any one other person

I Any three people

Describe in detail how the sharing algorithm works and how the reconstruction works
(for all authorized sets of users).

Note: It is �ne if di�erent users have shares which are of di�erent sizes (e.g., di�erent
number of bits to represent), and it is also �ne if the Reconstruct algorithm depends on
the identities of the users who are contributing their shares.

64

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

3.8. Suppose there are 9 people on an important committee: Alice, Bob, Carol, David, Eve,
Frank, Gina, Harold, & Irene. Alice, Bob & Carol form a subcommittee; David, Eve &
Frank form another subcommittee; and Gina, Harold & Irene form another subcommittee.

Suggest how a dealer can share a secret so that it can only be opened when a majority of
each subcommittee is present. Describe why a 6-out-of-9 threshold secret-sharing scheme
does not su�ce.

Hint:

AliceBobCarol

DavidEveFrank

GinaHaroldIrene

MAJ

MAJ

MAJ

AND

? 3.9. (a) Generalize the previous exercise. A monotone formula is a boolean function ϕ :
{0, 1}n → {0, 1} that when written as a formula uses only and and or operations (no
nots). For a set A ⊆ {1, . . . ,n}, let χA be the bitstring where whose ith bit is 1 if and
only if i ∈ A.
For every monotone formula ϕ : {0, 1}n → {0, 1}, construct a secret-sharing scheme
whose authorized sets are {A ⊆ {1, . . . ,n} | ϕ(χA) = 1}. Prove that your scheme is
secure.

Hint:

expresstheformulaasatreeofandandorgates.
(b) Give a construction of a t-out-of-n secret-sharing scheme in which all shares are binary

strings, and the only operation required of Share and Reconstruct is xor (so no mod-p
operations).
How big are the shares, compared to the Shamir scheme?

3.10. Prove that share s2 in Construction 3.14 is distributed independently of the secretm.

3.11. Using actual transparencies or with an image editing program, reconstruct the secret
shared in these two images:

65

Draft: January 3, 2021 CHAPTER 3. SECRET SHARING

? 3.12. Construct a 3-out-of-3 visual secret sharing scheme. Any two shares should together re-
veal nothing about the source image, but any three reveal the source image when stacked
together.

66

4 Basing Cryptography on

Intractable Computations

John Nash was a mathematician who earned the 1994 Nobel Prize in Economics for his
work in game theory. His life story was made into a successful movie, A Beautiful Mind.

In 1955, Nash was in correspondence with the United States National Security Agency
(NSA),1 discussing new methods of encryption that he had devised. In these letters, he also
proposes some general principles of cryptography (bold highlighting not in the original):

. . . in principle the enemy needs very little information to begin to break down
the process. Essentially, as soon as λ bits2 of enciphered message have been trans-
mitted the key is about determined. This is no security, for a practical key should
not be too long. But this does not consider how easy or di�cult it is for
the enemy to make the computation determining the key. If this com-
putation, although possible in principle, were su�ciently long at best
then the process could still be secure in a practical sense.

Nash is saying something quite profound: it doesn’t really matter whether attacks
are impossible, only whether attacks are computationally infeasible. If his letters
hadn’t been kept classi�ed until 2012, they might have accelerated the development of
“modern” cryptography, in which security is based on intractable computations. As it
stands, he was decades ahead of his time in identifying one of the most important concepts
in modern cryptography.

4.1 What �alifies as a “Computationally Infeasible” A�ack?

Schemes like one-time pad cannot be broken, even by an attacker that performs a brute-
force attack, trying all possible keys (see Exercise 1.5). However, all future schemes that
we will see can indeed be broken by such an attack. Nash is quick to point out that, for a
scheme with λ-bit keys:

The most direct computation procedure would be for the enemy to try all 2λ
possible keys, one by one. Obviously this is easilymade impractical for the enemy
by simply choosing λ large enough.

1The original letters, handwritten by Nash, are available at: h�ps://www.nsa.gov/Portals/70/documents/

news-features/declassified-documents/nash-le�ers/nash_le�ers1.pdf.
2Nash originally used r to denote the length of the key, in bits. In all of the excerpts quoted in this chapter,

I have translated his mathematical expressions into our notation (λ).

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/nash-letters/nash_letters1.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/nash-letters/nash_letters1.pdf
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

We call λ the security parameter of the scheme. It is like a knob that allows the
user to tune the security to any desired level. Increasing λ makes the di�culty of a brute-
force attack grow exponentially fast. Ideally, when using λ-bit keys, every attack (not just
a brute-force attack) will have di�culty roughy 2λ . However, sometimes faster attacks
are inevitable. Later in this chapter, we will see why many schemes with λ-bit keys have
attacks that cost only 2λ/2. It is common to see a scheme described as havingn-bit security
if the best known attack requires 2n steps.

Just how impractical is a brute-force computation on a 64-bit key? A 128-bit key?
Huge numbers like 264 and 2128 are hard to grasp at an intuitive level.

Example It can be helpful to think of the cost of a computation in terms of monetary value, and a
convenient way to assign such monetary costs is to use the pricing model of a cloud computing
provider. Below, I have calculated roughly how much a computation involving 2λ CPU cycles
would cost on Amazon EC2, for various choices of λ.3

clock cycles approx cost reference
250 $3.50 cup of co�ee
255 $100 decent tickets to a Portland Trailblazers game
265 $130,000 median home price in Oshkosh, WI
275 $130 million budget of one of the Harry Potter movies
285 $140 billion GDP of Hungary
292 $20 trillion GDP of the United States
299 $2 quadrillion all of human economic activity since 300,000 BC4

2128 really a lot a billion human civilizations’ worth of e�ort

Remember, this table only shows the cost to perform 2λ clock cycles. A brute-force attack
checking 2λ keys would take many more cycles than that! But, as a disclaimer, these numbers
re�ect only the retail cost of performing a computation, on fairly standard general-purpose
hardware. A government organization would be capable of manufacturing special-purpose
hardware that would signi�cantly reduce the computation’s cost. The exercises explore some
of these issues, as well as non-�nancial ways of conceptualizing the cost of huge computations.

Example In 2017, the �rst collision in the SHA-1 hash function was found (wewill discuss hash functions
later in the course). The attack involved evaluating the SHA-1 function 263 times on a cluster
of GPUs. An article in Ars Technica5 estimates the monetary cost of the attack as follows:

Had the researchers performed their attack on Amazon’s Web Services platform,
it would have cost $560,000 at normal pricing. Had the researchers been patient
and waited to run their attack during o�-peak hours, the same collision would
have cost $110,000.

3As of October 2018, the cheapest class of CPU that is suitable for an intensive computation is the
m5.large, which is a 2.5 GHz CPU. Such a CPU performs 243 clock cycles per hour. The cheapest rate on
EC2 for this CPU is 0.044 USD per hour (3-year reserved instances, all costs paid upfront). All in all, the cost
for a single clock cycle (rounding down) is 2−48 USD.

4I found some estimates (h�ps://en.wikipedia.org/wiki/Gross_world_product) of the gross world product
(like the GDP but for the entire world) throughout human history, and summed them up for every year.

5
h�ps://arstechnica.com/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/

68

https://en.wikipedia.org/wiki/Gross_world_product
https://arstechnica.com/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Asymptotic Running Time

It is instructive to think about the monetary cost of an enormous computation, but it
doesn’t necessarily help us draw the line between “feasible” attacks (which we want to
protect against) and “infeasible” ones (which we agreed we don’t need to care about). We
need to be able to draw such a line in order to make security de�nitions that say “only
feasible attacks are ruled out.”

Once again, John Nash thought about this question. He suggested to consider the
asymptotic cost of an attack — how does the cost of a computation scale as the security
parameter λ goes to in�nity?

So a logical way to classify enciphering processes is by the way in which the
computation length for the computation of the key increases with in-
creasing length of the key. This is at best exponential and at worst proba-
bly a relatively small power of λ, a · λ2 or a · λ3, as in substitution ciphers.

Nash highlights the importance of attacks that run in polynomial time:

Definition 4.1 A program runs in polynomial time if there exists a constant c > 0 such that for all su�-
ciently long input strings x , the program stops after no more than O(|x |c) steps.

Polynomial-time algorithms scale reasonably well (especially when the exponent is small),
but exponential-time algorithms don’t. It is probably no surprise to modern readers to see
“polynomial-time” as a synonym for “e�cient.” However, it’s worth pointing out that,
again, Nash is years ahead of his time relative to the �eld of computer science.

In the context of cryptography, our goal will be to ensure that no polynomial-time
attack can successfully break security. We will not worry about attacks like brute-force
that require exponential time.

Polynomial time is not a perfect match to what we mean when we informally talk about
“e�cient” algorithms. Algorithms with running time Θ(n1000) are technically polynomial-
time, while those with running time Θ(nlog log logn) aren’t. Despite that, polynomial-time is
extremely useful because of the following closure property: repeating a polynomial-time
process a polynomial number of times results in a polynomial-time process overall.

Potential Pitfall: Numerical Algorithms

When we study public-key cryptography, we will discuss algorithms that operate on very
large numbers (e.g., thousands of bits long). You must remember that representing the
number N on a computer requires only ∼ log2 N bits. This means that log2 N , rather than
N , is our security parameter! We will therefore be interested in whether certain operations
on the number N run in polynomial-time as a function of log2 N , rather than in N . Keep
in mind that the di�erence between running time O(logN) and O(N) is the di�erence
between writing down a number and counting to the number.

For reference, here are some numerical operations that we will be using later in the
class, and their known e�ciencies:

69

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

E�cient algorithm known: No known e�cient algorithm:
Computing GCDs Factoring integers
Arithmetic mod N Computing ϕ(N) given N
Inverses mod N Discrete logarithm
Exponentiation mod N Square roots mod composite N

Again, “e�cient” means polynomial-time. Furthermore, we only consider polynomial-
time algorithms that run on standard, classical computers. In fact, all of the problems in the
right-hand column do have known polynomial-time algorithms on quantum computers.

4.2 What �alifies as a “Negligible” Success Probability?

It is not enough to consider only the running time of an attack. For example, consider an
attacker who just tries to guess a victim’s secret key, making a single guess. This attack is
extremely cheap, but it still has a nonzero chance of breaking security!

In addition to an attack’s running time, we also need to consider its success probability.
We don’t want to worry about attacks that are as expensive as a brute-force attack, and
we don’t want to worry about attacks whose success probability is as low as a blind-guess
attack.

An attack with success probability 2−128 should not really count as an attack, but an
attack with success probability 1/2 should. Somewhere in between 2−128 and 2−1 we need
to �nd a reasonable place to draw a line.

Example Now we are dealing with extremely tiny probabilities that can be hard to visualize. Again, it
can be helpful to conceptualize these probabilities with a more familiar reference:

probability equivalent
2−10 full house in 5-card poker
2−20 royal �ush in 5-card poker
2−28 you win this week’s Powerball jackpot
2−40 royal �ush in 2 consecutive poker games
2−60 the next meteorite that hits Earth lands in this square→

As before, it is not clear exactly where to draw the line between “reasonable” and “un-
reasonable” success probability for an attack. Just like we did with polynomial running
time, we can also use an asymptotic approach to de�ne when a probability is negligi-
bly small. Just as “polynomial time” considers how fast an algorithm’s running time ap-
proaches in�nity as its input grows, we can also consider how fast a success probability
approaches zero as the security parameter grows.

In a scheme with λ-bit keys, a blind-guessing attack succeeds with probability 1/2λ .
Now what about an attacker who makes 2 blind guesses, or λ guesses, or λ42 guesses? Such
an attacker would still run in polynomial time, and has success probability 2/2λ , λ/2λ , or
λ42/2λ . However, no matter what polynomial you put in the numerator, the probability still
goes to zero. Indeed, 1/2λ approaches zero so fast that no polynomial can “rescue”
it; or, in other words, it approaches zero faster than 1 over any polynomial. This idea leads
to our formal de�nition:

70

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Definition 4.2

(Negligible)

A function f is negligible if, for every polynomial p, we have lim
λ→∞

p(λ)f (λ) = 0.

In other words, a negligible function approaches zero so fast that you can never catch
up when multiplying by a polynomial. This is exactly the property we want from a se-
curity guarantee that is supposed to hold against all polynomial-time adversaries. If a
polynomial-time attacker succeeds with probability f , then repeating the same attack p
independent times would still be an overall polynomial-time attack (if p is a polynomial),
and its success probability would be p · f .

When you want to check whether a function is negligible, you only have to consider
polynomials p of the form p(λ) = λc for some constant c:

Claim 4.3 If for every integer c , lim
λ→∞

λc f (λ) = 0, then f is negligible.

Proof Suppose f has this property, and take an arbitrary polynomial p. We want to show that
limλ→∞ p(λ)f (λ) = 0.

If d is the degree of p, then limλ→∞
p(λ)
λd+1 = 0. Therefore,

lim
λ→∞

p(λ)f (λ) = lim
λ→∞

[
p(λ)

λd+1

(
λd+1 · f (λ)

)]
=

(
lim
λ→∞

p(λ)

λd+1

) (
lim
λ→∞

λd+1 · f (λ)

)
= 0 · 0.

The second equality is a valid law for limits since the two limits on the right exist and are
not an indeterminate expression like 0 · ∞. The �nal equality follows from the hypothesis
on f . �

Example The function f (λ) = 1/2λ is negligible, since for any integer c , we have:

lim
λ→∞

λc/2λ = lim
λ→∞

2c log(λ)/2λ = lim
λ→∞

2c log(λ)−λ = 0,

since c log(λ) − λ approaches −∞ in the limit, for any constant c . Using similar reasoning,
one can show that the following functions are also negligible:

1
2λ/2
,

1
2
√
λ
,

1
2log2 λ

,
1

λlog λ
.

Functions like 1/λ5 approach zero but not fast enough to be negligible. To see why, we can
take polynomial p(λ) = λ6 and see that the resulting limit does not satisfy the requirement
from De�nition 4.2:

lim
λ→∞

p(λ)
1
λ5
= lim
λ→∞

λ = ∞ , 0

In this class, when we see a negligible function, it will typically always be one that
is easy to recognize as negligible (just as in an undergraduate algorithms course, you
won’t really encounter algorithms where it’s hard to tell whether the running time is
polynomial).

Definition 4.4

(f ≈ д)

If f ,д : N → R are two functions, we write f ≈ д to mean that
��f (λ) − д(λ)�� is a negligible

function.

71

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

We use the terminology of negligible functions exclusively when discussing probabilities,
so the following are common:

Pr[X] ≈ 0 ⇔ “event X almost never happens”
Pr[Y] ≈ 1 ⇔ “event Y almost always happens”

Pr[A] ≈ Pr[B] ⇔ “events A and B happen with
essentially the same probability”6

Additionally, the ≈ symbol is transitive:7 if Pr[X] ≈ Pr[Y] and Pr[Y] ≈ Pr[Z], then Pr[X] ≈
Pr[Z] (perhaps with a slightly larger, but still negligible, di�erence).

4.3 Indistinguishability

So far we have been writing formal security de�nitions in terms of interchangeable li-
braries, which requires that two libraries have exactly the same e�ect on every calling
program. Going forward, our security de�nitions will not be quite as demanding. First,
we only consider polynomial-time calling programs; second, we don’t require the libraries
to have exactly the same e�ect on the calling program, only that the di�erence in e�ects
is negligible.

Definition 4.5

(Indistinguishable)

Let Lle� and Lright be two libraries with a common interface. We say that Lle� and Lright

are indistinguishable, and writeLle�

∼∼∼ Lright, if for all polynomial-time programsA that
output a single bit, Pr[A � Lle� ⇒ 1] ≈ Pr[A � Lright ⇒ 1].

We call the quantity
�� Pr[A � Lle� ⇒ 1] − Pr[A � Lright ⇒ 1]

�� the advantage or bias
of A in distinguishing Lle� from Lright. Two libraries are therefore indistinguishable if all
polynomial-time calling programs have negligible advantage in distinguishing them.

From the properties of the “≈” symbol, we can see that indistinguishability of libraries is
also transitive, which allows us to carry out hybrid proofs of security in the same way as
before.

Example Here is a very simple example of two indistinguishable libraries:

Lle�

predict(x):
s ← {0, 1}λ

return x
?
= s

Lright

predict(x):
return false

6Pr[A] ≈ Pr[B] doesn’t mean that events A and B almost always happen together (when A and B are
de�ned over a common probability space) — imagine A being the event “the coin came up heads” and B being
the event “the coin came up tails.” These events have the same probability but never happen together. To say
that “A and B almost always happen together,” you’d have to say something like Pr[A ⊕ B] ≈ 0, where A ⊕ B
denotes the event that exactly one of A and B happens.

7It’s only transitive when applied a polynomial number of times. So you can’t de�ne a whole series of
events Xi , show that Pr[Xi] ≈ Pr[Xi+1], and conclude that Pr[X1] ≈ Pr[X2n]. It’s rare that we’ll encounter
this subtlety in this course.

72

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Imagine the calling program trying to predict which string will be chosen when uniformly
sampling from {0, 1}λ . The left library tells the calling program whether its prediction was
correct. The right library doesn’t even bother sampling a string, it just always says “sorry,
your prediction was wrong.”

Here is one obvious strategy (maybe not the best one, we will see) to distinguish these
libraries. The calling program Aobvious calls predict many times and outputs 1 if it ever
received true as a response. Since it seems like the argument to predict might not have any
e�ect, let’s just use the string of all-0s as argument every time.

Aobvious

do q times:
if predict(0λ) = true

return 1
return 0

I Lright can never return true, so Pr[Aobvious � Lright ⇒ 1] = 0.

I In Lle� each call to predict has an independent probability 1/2λ of returning true.
So Pr[Aobvious � Lle� ⇒ 1] is surely non-zero. Actually, the exact probability is a bit
cumbersome to write:

Pr[Aobvious � Lle� ⇒ 1] = 1 − Pr[Aobvious � Lle� ⇒ 0]
= 1 − Pr[all q independent calls to predict return false]

= 1 −
(
1 −

1
2λ

)q
Rather than understand this probability, we can just compute an upper bound for it.
Using the union bound, we get:

Pr[Aobvious � Lle� ⇒ 1] 6 Pr[�rst call to predict returns true]
+ Pr[second call to predict returns true] + · · ·

= q
1
2λ

This is an overestimate of some probabilities (e.g., if the �rst call to predict returns
true, then the second call isn’t made). More fundamentally, q/2λ exceeds 1 when q is
large. But nevertheless, Pr[Aobvious � Lle� ⇒ 1] 6 q/2λ .

We showed thatAobvious has non-zero advantage. This is enough to show that Lle� . Lright.
We also showed that Aobvious has advantage at most q/2λ . Since Aobvious runs in poly-

nomial time, it can only make a polynomial number q of queries to the library, so q/2λ is
negligible. However, this is not enough to show that Lle�

∼∼∼ Lright since it considers only a
single calling program. To show that the libraries are indistinguishable, we must show that
every calling program’s advantage is negligible.

In a few pages, we will prove that for any A that makes q calls to predict,��� Pr[A � Lle� ⇒ 1] − Pr[A � Lright ⇒ 1]
��� 6 q

2λ
.

For any polynomial-time A, the number q of calls to predict will be a polynomial in λ,
making q/2λ a negligible function. Hence, Lle�

∼∼∼ Lright.

73

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Other Properties

Lemma 4.6

(
∼∼∼ facts)

If L1 ≡ L2 then L1

∼∼∼ L2. Also, if L1

∼∼∼ L2

∼∼∼ L3 then L1

∼∼∼ L3.

Analogous to Lemma 2.11, we also have the following library chaining lemma, which
you are asked to prove as an exercise:

Lemma 4.7

(Chaining)

If Lle�

∼∼∼ Lright then L∗ � Lle�

∼∼∼ L
∗ � Lright for any polynomial-time library L∗.

Bad-Event Lemma

A common situation is when two libraries are expected to execute exactly the same state-
ments, until some rare & exceptional condition happens. In that case, we can bound an
attacker’s distinguishing advantage by the probability of the exceptional condition.

More formally,

Lemma 4.8

(Bad events)

Let Lle� and Lright be libraries that each de�ne a variable named ‘bad’ that is initialized to
0. If Lle� and Lright have identical code, except for code blocks reachable only when bad = 1
(e.g., guarded by an “if bad = 1” statement), then��� Pr[A � Lle� ⇒ 1] − Pr[A � Lright ⇒ 1]

��� 6 Pr[A � Lle� sets bad = 1].

Proof? Fix an arbitrary calling program A. In this proof, we use conditional probabilites8 to
isolate the cases where bad is changed to 1. We de�ne the following events:

I Ble�: the event that A �Lle� sets bad to 1 at some point.

I Bright: the event that A �Lright sets bad to 1 at some point.

We also write Ble� and Bright to denote the corresponding complement events. From con-
ditional probability, we can write:

Pr[A � Lle� ⇒ 1] = Pr[A � Lle� ⇒ 1 | Ble�] Pr[Ble�]

+ Pr[A � Lle� ⇒ 1 | Ble�] Pr[Ble�]

Pr[A � Lright ⇒ 1] = Pr[A � Lright ⇒ 1 | Bright] Pr[Bright]

+ Pr[A � Lright ⇒ 1 | Bright] Pr[Bright]

Our �rst observation is that Pr[Ble�] = Pr[Bright]. This is because at the time bad is
changed to 1 for the �rst time, the library has only been executing instructions that are
the same in Lle� and Lright. In other words, the choice to set bad to 1 is determined by
the same sequence of instructions in both libraries, so it occurs with the same probability
in both libraries.

As a shorthand notation, we de�ne p∗ def
= Pr[Ble�] = Pr[Bright]. Then we can write the

advantage of A as:

advantageA =

��� Pr[A � Lle� ⇒ 1] − Pr[A � Lright ⇒ 1]
���

8The use of conditional probabilites here is delicate and prone to subtle mistakes. For a discussion of the
pitfalls, consult the paper where this lemma �rst appeared: Mihir Bellare & Phillip Rogaway: “Code-Based
Game-Playing Proofs and the Security of Triple Encryption,” in Eurocrypt 2006. ia.cr/2004/331

74

http://ia.cr/2004/331

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

=

������
(
Pr[A � Lle� ⇒ 1 | Ble�] · p

∗ + Pr[A � Lle� ⇒ 1 | Ble�](1 − p∗)
)

−

(
Pr[A � Lright ⇒ 1 | Bright] · p

∗ + Pr[A � Lright ⇒ 1 | Bright](1 − p∗)
) ������

=

������ p∗
(
Pr[A � Lle� ⇒ 1 | Ble�] − Pr[A � Lright ⇒ 1 | Bright]

)
(1 − p∗)

(
Pr[A � Lle� ⇒ 1 | Ble�] − Pr[A � Lright ⇒ 1 | Bright]

) ������
In both of the expressions Pr[A � Lle� ⇒ 1 | Ble�] and Pr[A � Lright ⇒ 1 | Bright], we
are conditioning on bad never being set to 0. In this case, both libraries are executing
the same sequence of instructions, so the probabilities are equal (and the di�erence of the
probabilities is zero). Substituting in, we get:

advantageA = p
∗
��� Pr[A � Lle� ⇒ 1 | Ble�] − Pr[A � Lright ⇒ 1 | Bright]

���
Intuitively, the proof is con�rming the idea that di�erences can only be noticed between
Lle� andLright when bad is set to 1 (corresponding to our conditioning onBle� andBright).

The quantity within the absolute value is the di�erence of two probabilities, so the
largest it can be is 1. Therefore,

advantageA 6 p
∗ def
= Pr[Ble�] = Pr[A � Lle� sets bad = 1].

This completes the proof. �

Example Consider Lle� and Lright from the previous example (where the calling program tries to “pre-
dict” the result of uniformly sampling a λ-bit string). We can prove that they are indistin-
guishable with the following sequence of hybrids:

Lle�

predict(x):
s ← {0, 1}λ

return x
?
= s

≡

Lhyb-L

bad := 0

predict(x):
s ← {0, 1}λ

if x = s:
bad := 1
return true

return false

∼∼∼

Lhyb-R

bad := 0

predict(x):
s ← {0, 1}λ

if x = s:
bad := 1

return false

≡

Lright

predict(x):
return false

Let us justify each of the steps:

I Lle� ≡ Lhyb-L: The only di�erence is that Lhyb-L maintains a variable “bad.” Since it
never actually reads from this variable, the change can have no e�ect.

I Lhyb-L and Lhyb-R di�er only in the highlighted line, which can only be reached when
bad = 1. Therefore, from the bad-event lemma:��� Pr[A � Lhyb-L ⇒ 1] − Pr[A � Lhyb-R ⇒ 1]

��� 6 Pr[A � Lhyb-L sets bad = 1].

75

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

But A � Lhyb-L only sets bad = 1 if the calling program successfully predicts s in one
of the calls to predict. With q calls to predict, the total probability of this happening
is at most q/2λ , which is negligible when the calling program runs in polynomial time.
Hence Lhyb-L

∼∼∼ Lhyb-R.

I Lhyb-R ≡ Lright: Similar to above, note how the �rst 3 lines of predict in Lhyb-R don’t
actually do anything. The subroutine is going to return false no matter what. Both
libraries have identical behavior.

Since Lle� ≡ Lhyb-L

∼∼∼ Lhyb-R ≡ Lright, this proves that Lle�

∼∼∼ Lright.

4.4 Birthday Probabilities & Sampling With/out Replacement

In many cryptographic schemes, the users repeatedly choose random strings (e.g., each
time they encrypt a message), and security breaks down if the same string is ever chosen
twice. Hence, it is important that the probability of a repeated sample is negligible. In this
section we compute the probability of such events and express our �ndings in a modular
way, as a statement about the indistinguishability of two libraries.

Birthday Probabilities

Ifq people are in a room, what is the probability that two of them have the same birthday (if
we assume that each person’s birthday is uniformly chosen from among the possible days
in a year)? This question is known as the birthday problem, and it is famous because
the answer is highly unintuitive to most people.9

Let’s make the question more general. Imagine takingq independent, uniform samples
from a set of N items. What is the probability that the same value gets chosen more than
once? In other words, what is the probability that the following program outputs 1?

B(q,N)

for i := 1 to q:
si ← {1, . . . ,N }
for j := 1 to i − 1:

if si = sj then return 1
return 0

Let’s give a name to this probability:

BirthdayProb(q,N)
def
= Pr[B(q,N) outputs 1].

It is possible to write an exact formula for this probability:

Lemma 4.9 BirthdayProb(q,N) = 1 −
q−1∏
i=1

(
1 −

i

N

)
.

9It is sometimes called the “birthday paradox,” even though it is not really a paradox. The actual birthday
paradox is that the “birthday paradox” is not a paradox.

76

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Proof Let us instead compute the probability that B outputs 0, which will allow us to then solve
for the probability that it outputs 1. In order for B to output 0, it must avoid the early
termination conditions in each iteration of the main loop. Therefore:

Pr[B(q,N) outputs 0] = Pr[B(q,N) doesn’t terminate early in iteration i = 1]
· Pr[B(q,N) doesn’t terminate early in iteration i = 2]
...

· Pr[B(q,N) doesn’t terminate early in iteration i = q]

In iteration i of the main loop, there are i − 1 previously chosen values s1, . . . , si−1. The
program terminates early if any of these are chosen again as si , otherwise it continues to
the next iteration. Put di�erently, there are i − 1 (out of N) ways to choose si that lead to
early termination — all other choices of si avoid early termination. Since theN possibilities
for si happen with equal probability:

Pr[B(q,N) doesn’t terminate early in iteration i] = 1 −
i − 1
N
.

Putting everything together:

BirthdayProb(q,N) = Pr[B(q,N) outputs 1]
= 1 − Pr[B(q,N) outputs 0]

= 1 −
(
1 −

1
N

) (
1 −

2
N

)
· · ·

(
1 −

q − 1
N

)
= 1 −

q−1∏
i=1

(
1 −

i

N

)
This completes the proof. �

Example This formula for BirthdayProb(q,N) is not easy to understand at a glance. We can get a
better sense of its behavior as a function of q by plotting it. Below is a plot with N = 365,
corresponding to the classic birthday problem:

0 10 20 30 40 50 60 70
0

0.5

1

BirthdayProb(q, 365)

With only q = 23 people the probability of a shared birthday already exceeds 50%. The graph
could be extended to the right (all the way to q = 365), but even at q = 70 the probability
exceeds 99.9%.

77

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Asymptotic Bounds on the Birthday Probability

It will be helpful to have an asymptotic formula for how BirthdayProb(q,N) grows as
a function of q and N . We are most interested in the case where q is relatively small
compared to N (e.g., when q is a polynomial function of λ but N is exponential).

Lemma 4.10

(Birthday Bound)

If q 6
√
2N , then

0.632
q(q − 1)
2N

6 BirthdayProb(q,N) 6
q(q − 1)
2N

.

Since the upper and lower bounds di�er by only a constant factor, it makes sense to write
BirthdayProb(q,N) = Θ(q2/N).

Proof We split the proof into two parts.

I To prove the upper bound, we use the fact that when x and y are positive,

(1 − x)(1 − y) = 1 − (x + y) + xy
> 1 − (x + y).

More generally, when all terms xi are positive,
∏

i (1 − xi) > 1 −
∑

i xi . Hence,

1 −
∏

i (1 − xi) 6 1 − (1 −
∑

i xi) =
∑

i xi .

Applying that fact,

BirthdayProb(q,N)
def
= 1 −

q−1∏
i=1

(
1 −

i

N

)
6

q−1∑
i=1

i

N
=

∑q−1
i=1 i

N
=
q(q − 1)
2N

.

I To prove the lower bound, we use the fact that when 0 6 x 6 1,

1 − x 6 e−x 6 1 − 0.632x .

This fact is illustrated below. The signi�cance of 0.632 is that 1 − 1
e = 0.63212 . . .

e−x
1 − 0.632x
1
−
x

We can use both of these upper and lower bounds on e−x to show the following:

q−1∏
i=1

(
1 −

i

N

)
6

q−1∏
i=1

e−
i
N = e−

∑q−1
i=1

i
N = e−

q(q−1)
2N 6 1 − 0.632

q(q − 1)
2N

.

78

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

With the last inequality we used the fact that q 6
√
2N , and therefore q(q−1)

2N 6 1
(this is necessary to apply the inequality e−x 6 1 − 0.632x). Hence:

BirthdayProb(q,N)
def
= 1 −

q−1∏
i=1

(
1 −

i

N

)
> 1 −

(
1 − 0.632

q(q − 1)
2N

)
= 0.632

q(q − 1)
2N

.

This completes the proof. �

Example Below is a plot of these bounds compared to the actual value of BirthdayProb(q,N) (for N =
365):

0 10 20 30 40 50 60 70
0

0.5

1

BirthdayProb(q, 365)

0.632q(q−1)2·365

q(q−1)
2·365

As mentioned previously, BirthdayProb(q,N) grows roughly like q2/N within the range of
values we care about (q small relative to N).

The Birthday Problem in Terms of Indistinguishable Libraries

Below are two libraries which will also be useful for future topics.

Lsamp-L

samp():
r ← {0, 1}λ

return r

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Both libraries provide a samp subroutine that samples a random element of {0, 1}λ . The
implementation in Lsamp-L samples uniformly and independently from {0, 1}λ each time.
It samples with replacement, so it is possible (although maybe unlikely) for multiple
calls to samp to return the same value in Lsamp-L.

On the other hand,Lsamp-R samples λ-bit stringswithout replacement. It keeps track
of a set R, containing all the values it has previously sampled, and avoids choosing them
again (“{0, 1}λ \R” is the set of λ-bit strings excluding the ones in R). In this library, samp
will never output the same value twice.

79

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

The “obvious” distinguishing strategy. A natural way (but maybe not the only way)
to distinguish these two libraries, therefore, would be to call samp many times. If you ever
see a repeated output, then you must certainly be linked to Lsamp-L. After some number
of calls to samp, if you still don’t see any repeated outputs, you might eventually stop and
guess that you are linked to Lsamp-R.

Let Aq denote this “obvious” calling program that makes q calls to samp and returns
1 if it sees a repeated value. Clearly, the program can never return 1 when it is linked to
Lsamp-R. On the other hand, when it is linked to Lsamp-L, it returns 1 with probability ex-
actly BirthdayProb(q, 2λ). Therefore, the advantage of Aq is exactly BirthdayProb(q, 2λ).

This program behaves di�erently in the presence of these two libraries, therefore they
are not interchangeable. But are the libraries indistinguishable? We have demonstrated a
calling program with advantage BirthdayProb(q, 2λ). We have not speci�ed q exactly, but
ifAq is meant to run in polynomial time (as a function of λ), then q must be a polynomial
function of λ. Then the advantage of Aq is BirthdayProb(q, 2λ) = Θ(q2/2λ), which is
negligible!

To show that the librares are indistinguishable, we have to show that all calling pro-
grams have negligible advantage. It is not enough just to show that this particular calling
program has negligible advantage. Perhaps surprisingly, the “obvious” calling program
that we considered is the best possible distinguisher!

Lemma 4.11

(Repl. Sampling)

Let Lsamp-L and Lsamp-R be de�ned as above. Then for all calling programs A that make q
queries to the samp subroutine, the advantage ofA in distinguishing the libraries is at most
BirthdayProb(q, 2λ).

In particular, whenA is polynomial-time (in λ), q grows as a polynomial in the security
parameter. Hence, A has negligible advantage. Since this is true for all polynomial-time A,
we have Lsamp-L

∼∼∼ Lsamp-R.

Proof Consider the following hybrid libraries:

Lhyb-L

R := ∅
bad := 0

samp():
r ← {0, 1}λ

if r ∈ R then:
bad := 1

R := R ∪ {r }
return r

Lhyb-R

R := ∅
bad := 0

samp():
r ← {0, 1}λ

if r ∈ R then:
bad := 1
r ← {0, 1}λ \ R

R := R ∪ {r }
return r

First, let us prove some simple observations about these libraries:

Lhyb-L ≡ Lsamp-L: Note that Lhyb-L simply samples uniformly from {0, 1}λ . The extra R
and bad variables in Lhyb-L don’t actually have an e�ect on its external
behavior (they are used only for convenience later in the proof).

80

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Lhyb-R ≡ Lsamp-R: Whereas Lsamp-R avoids repeats by simply sampling from {0, 1}λ \ R,
this library Lhyb-R samples r uniformly from {0, 1}λ and retries if the
result happens to be in R. This method is called rejection sampling, and
it has the same e�ect10 as sampling r directly from {0, 1}λ \ R.

Conveniently, Lhyb-L and Lhyb-R di�er only in code that is reachable when bad = 1 (high-
lighted). So, using Lemma 4.8, we can bound the advantage of the calling program:�� Pr[A � Lsamp-L ⇒ 1] − Pr[A � Lsamp-R ⇒ 1]

��
=

�� Pr[A � Lhyb-L ⇒ 1] − Pr[A � Lhyb-R ⇒ 1]
��

6 Pr[A � Lhyb-L sets bad := 1].

Finally, we can observe thatA�Lhyb-L sets bad := 1 only in the event that it sees a repeated
sample from {0, 1}λ . This happens with probability BirthdayProb(q, 2λ). �

Discussion

I Stating the birthday problem in terms of indistinguishable libraries makes it a useful
tool in future security proofs. For example, when proving the security of a construc-
tion we can replace a uniform sampling step with a sampling-without-replacement
step. This change has only a negligible e�ect, but now the rest of the proof can take
advantage of the fact that samples are never repeated.

Another way to say this is that, when you are thinking about a cryptographic con-
struction, it is “safe to assume” that randomly sampled long strings do not repeat,
and behave accordingly.

I However, if a security proof does use the indistinguishability of the birthday li-
braries, it means that the scheme can likely be broken when a user happens to repeat
a uniformly sampled value. Since this becomes inevitable as the number of samples
approaches

√
2λ+1 ∼ 2λ/2, it means the scheme only o�ers λ/2 bits of security. When

a scheme has this property, we say that it has birthday bound security. It is im-
portant to understand when a scheme has this property, since it informs the size of
keys that should be chosen in practice.

A Generalization

A calling program can distinguish between the previous libraries if samp ever returns the
same value twice. In any given call to samp, the variableR denotes the set of “problematic”
values that cause the libraries to be distinguished. At any point, R has only polynomially
many values, so the probability of chosing such a problematic one is negligible.

Suppose we considered a di�erent set of values to be problematic. As long as there are
only polynomially many problematic values in each call to samp, the reasoning behind the
proof wouldn’t change much. This idea leads to the following generalization, in which the
calling program explicitly writes down all of the problematic values:

10The two approaches for sampling from {0, 1}λ \ R may have di�erent running times, but our model
considers only the input-output behavior of the library.

81

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

Lemma 4.12 The following two libraries are indistinguishable, provided that the argument R to samp is
passed as an explicit list of items.

Lsamp-L

samp(R ⊆ {0, 1}λ):
r ← {0, 1}λ

return r

Lsamp-R

samp(R ⊆ {0, 1}λ):
r ← {0, 1}λ \ R
return r

Suppose the calling program makes q calls to samp, and in the ith call it uses an argu-
ment R with ni items. Then the advantage of the calling program is at most:

1 −
q∏
i=1

(
1 −

ni

2λ
)
.

We can bound this advantage as before. If
∑q

i=1 ni 6 2λ , then the advantage is between
0.632

(∑q
i=1 ni

)
/2λ and

(∑q
i=1 ni

)
/2λ . When the calling program runs in polynomial time

and must pass R as an explicit list (i.e., take the time to “write down” the elements of R),∑q
i=1 ni is a polynomial in the security parameter and the calling program’s advantage is

negligible.
The birthday scenario corresponds to the special case where ni = i − 1 (in the ith call,

R consists of the i−1 results from previous calls to samp). In that case,
∑q

i=1 ni = q(q−1)/2
and the probabilities collapse to the familiar birthday probabilities.

Exercises

4.1. In Section 4.1 we estimated the monetary cost of large computations, using pricing infor-
mation from Amazon EC2 cloud computing service. This re�ects the cost of doing a huge
computation using a general-purpose CPU. For long-lived computations, the dominating
cost is not the one-time cost of the hardware, but rather the cost of electricity powering
the hardware. Because of that, it can be much cheaper to manufacture special-purpose
hardware. Depending on the nature of the computation, special-purpose hardware can be
signi�cantly more energy-e�cient.

This is the situation with the Bitcoin cryptocurrency. Mining Bitcoin requires evaluat-
ing the SHA-256 cryptographic hash function as many times as possible, as fast as possi-
ble. When mining Bitcoin today, the only economically rational choice is to use special-
purpose hardware that does nothing except evaluate SHA-256, but is millions (maybe bil-
lions) of times more energy e�cient than a general-purpose CPU evaluating SHA-256.

(a) The relevant specs for Bitcoin mining hardware are wattage and giga-hashes (or tera-
hashes) per second, which can be converted into raw energy required per hash. Search
online and �nd the most energy e�cient mining hardware you can (e.g., least joules
per hash).

(b) Find the cheapest real-world electricity rates you can, anywhere in the world. Use
these to estimate the monetary cost of computing 240, 250, . . . , 2120 SHA-256 hashes.

82

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

(c) Money is not the only way to measure the energy cost of a huge computation. Search
online to �nd out how much carbon dioxide (CO2) is placed into the atmosphere per
unit of electrical energy produced, under a typical distribution of power production
methods. Estimate how many tons of CO2 are produced as a side-e�ect of computing
240, 250, . . . , 2120 SHA-256 hashes.

? (d) Estimate the corresponding CO2 concentration (parts per million) in the atmosphere
as a result of computing 240, 250, . . . , 2120 SHA-256 hashes. If it is possible without
a PhD in climate science, try to estimate the increase in average global temperature
caused by these computations.

4.2. Which of the following are negligible functions in λ? Justify your answers.

1
2λ/2

1
2log(λ2)

1
λlog(λ)

1
λ2

1
2(log λ)2

1
(log λ)2

1
λ1/λ

1
√
λ

1
2
√
λ

4.3. Suppose f and д are negligible.

(a) Show that f + д is negligible.

(b) Show that f · д is negligible.

(c) Give an example f and д which are both negligible, but where f (λ)/д(λ) is not negli-
gible.

4.4. Show that when f is negligible, then for every polynomial p, the function p(λ)f (λ) not
only approaches 0, but it is also negligible itself.

Hint: Usethecontrapositive.Supposethatp(λ)f(λ)isnon-negligible,wherepisapolynomial.Conclude
thatfmustalsobenon-negligible.

4.5. Prove that the≈ relation is transitive. Let f ,д,h : N→ R be functions. Using the de�nition
of the ≈ relation, prove that if f ≈ д and д ≈ h then f ≈ h. You may �nd it useful to invoke
the triangle inequality: |a − c | 6 |a − b | + |b − c |.

4.6. Prove Lemma 4.6.

4.7. Prove Lemma 4.7.

? 4.8. A deterministic program is one that uses no random choices. Suppose L1 and L2 are two
deterministic libraries with a common interface. Show that either L1 ≡ L2, or else L1 &
L2 can be distinguished with advantage 1.

4.9. Algorithm B in Section 4.4 has worst-case running time O(q2). Can you suggest a way to
make it run in O(q logq) time? What about O(q) time?

4.10. Assume that the last 4 digits of student ID numbers are assigned uniformly at this uni-
versity. In a class of 46 students, what is the exact probability that two students have ID
numbers with the same last 4 digits?

Compare this exact answer to the upper and lower bounds given by Lemma 4.10.

83

Draft: January 3, 2021 CHAPTER 4. BASING CRYPTOGRAPHY ON INTRACTABLE COMPUTATIONS

4.11. Write a program that experimentally estimates the BirthdayProb(q,N) probabilities.

Given q and N , generate q uniformly chosen samples from ZN , with replacement, and
check whether any element was chosen more than once. Repeat this entire process t times
to estimate the true probability of BirthdayProb(q,N).

Generate a plot that compares your experimental �ndings to the theoretical upper/lower
bounds of 0.632q(q−1)2λ+1 and q(q−1)

2λ+1 .

4.12. Suppose you want to enforce password rules so that at least 2128 passwords satisfy the
rules. How many characters long must the passwords be, in each of these cases?

(a) Passwords consist of lowercase a through z only.

(b) Passwords consist of lowercase and uppercase letters a–z and A–Z.

(c) Passwords consist of lower/uppercase letters and digits 0–9.

(d) Passwords consist of lower/uppercase letters, digits, and any symbol characters that
appear on a standard US keyboard (including the space character).

84

5 Pseudorandom Generators

One-time pad requires a key that’s as long as the plaintext. Let’s forget that we know
about this limitation. Suppose Alice & Bob share only a short λ-bit secret k , but they
want to encrypt a 2λ-bit plaintext m. They don’t know that (perfect) one-time secrecy is
impossible in this setting (Exercise 2.11), so they try to get it to work anyway using the
following reasoning:

I The only encryption scheme they know about is one-time pad, so they decide that
the ciphertext will have the form c =m ⊕ ?? . This means that the unknown value
?? must be 2λ bits long.

I In order for the security of one-time pad to apply, the unknown value ?? should be
uniformly distributed.

I The process of obtaining the unknown value ?? from the shared key k should be
deterministic, so that the sender and receiver compute the same value and decryption
works correctly.

Let G denote the process that transforms the key k into this mystery value. Then G :
{0, 1}λ → {0, 1}2λ , and the encryption scheme is Enc(k,m) =m ⊕ G(k).

It is not hard to see that ifG is a deterministic function, then there are only 2λ possible
outputs ofG, so the distribution ofG(k) cannot be uniform in {0, 1}2λ . We therefore cannot
argue that the scheme is secure in the same way as one-time pad.

However, what if the distribution of G(k) values is not perfectly uniform but only
“close enough” to uniform? Suppose no polynomial-time algorithm can distinguish the
distribution of G(k) values from the uniform distribution. Then surely this ought to be
“close enough” to uniform for practical purposes. This is exactly the idea of pseudoran-
domness. It turns out that if G has a pseudorandomness property, then the encryption
scheme described above is actually secure (against polynomial-time adversaries, in the
sense discussed in the previous chapter).

5.1 Definitions

A pseudorandom generator (PRG) is a deterministic function G whose outputs are
longer than its inputs. When the input to G is chosen uniformly at random, it induces a
certain distribution over the possible output. As discussed above, this output distribution
cannot be uniform. However, the distribution is pseudorandom if it is indistinguishable
from the uniform distribution. More formally:

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Definition 5.1

(PRG security)

LetG : {0, 1}λ → {0, 1}λ+` be a deterministic function with ` > 0. We say thatG is a secure
pseudorandom generator (PRG) if LG

prg-real

∼∼∼ L
G
prg-rand

, where:

LG
prg-real

qery():
s ← {0, 1}λ

return G(s)

LG
prg-rand

qery():
r ← {0, 1}λ+`

return r

The value ` is called the stretch of the PRG. The input to the PRG is typically called a seed.

Below is an illustration of the distributions sampled by these libraries, for a length-
doubling (` = λ) PRG (not drawn to scale) :

{0, 1}λ

{0, 1}2λ

pseudorandom distribution

G

{0, 1}2λ

uniform distribution

Lprg-real samples from distribution of red dots, by �rst sampling a uniform element of
{0, 1}λ and performing the action ofG on that value to get a red result in {0, 1}2λ . The other
library Lprg-rand directly samples the uniform distribution on {0, 1}2λ (in green above).

To understand PRGs, you must simultaneously appreciate two ways to compare the
PRG’s output distribution with the uniform distribution:

I From a relative perspective, the PRG’s output distribution is tiny. Out of the 22λ
strings in {0, 1}2λ , only 2λ are possible outputs of G. These strings make up a
2λ/22λ = 1/2λ fraction of {0, 1}2λ — a negligible fraction!

I From an absolute perspective, the PRG’s output distribution is huge. There are 2λ
possible outputs of G, which is an exponential amount!

The illustration above only captures the relative perspective (comparing the red dots to
the entire extent of {0, 1}2λ), so it can lead to some misunderstanding. Just looking at this
picture, it is hard to imagine how the two distributions could be indistinguishable. How
could a calling program not notice whether it’s seeing the whole set or just a negligible
fraction of the whole set? Well, if you run in polynomial-time in λ, then 2λ and 22λ are
both so enormous that it doesn’t really matter that one is vastly bigger than the other.
The relative sizes of the distribution don’t really help distinguish, since it is not a viable
strategy for the distinguisher to “measure” the size of the distribution it’s sampling.

86

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Consider: there are about 275 molecules in a teaspoon of water, and about 22·75
molecules of water in Earth’s oceans. Suppose you dump a teaspoon of water into the
ocean and let things mix for a few thousand years. Even though the teaspoon accounts for
only 1/275 of the ocean’s contents, that doesn’t make it easy to keep track of all 275 water
molecules that originated in the teaspoon! If you are small enough to see individual water
molecules, then a teaspoon of water looks as big as the ocean.

Discussion & Pitfalls

I Do not confuse the interface of a PRG (it takes in a seed as input) with the interface
of the security libraries Lprg-? (their qery subroutine doesn’t take any input)! A
PRG is indeed an algorithm into which you can feed any string you like. However,
security is only guaranteed when the PRG is being used exactly as described in
the security libraries — in particular, when the seed is chosen uniformly/secretly
and not used for anything else.

Nothing prevents a user from putting an adversarially-chosen s into a PRG, or re-
vealing a PRG seed to an adversary, etc. You just get no security guarantee from
doing it, since it’s not the situation re�ected in the PRG security libraries.

I It doesn’t really make sense to say that “0010110110 is a random string” or
“0000000001 is a pseudorandom string.” Randomness and pseudorandomness are
properties of the process used to generate a string, not properties of the indi-
vidual strings themselves. When we have a value z = G(s)whereG is a PRG and s is
chosen uniformly, you could say that z was “chosen pseudorandomly.” You could say
that the output of some process is a “pseudorandom distribution.” But it is slightly
sloppy (although common) to say that a string z “is pseudorandom”.

I There are common statistical tests you can run, which check whether some data
has various properties that you would expect from a uniform distribution.1 For
example, are there roughly an equal number of 0s and 1s? Does the substring 01010

occur with roughly the frequency I would expect? If I interpret the string as a series
of points in the unit square [0, 1)2, is it true that roughly π/4 of them are within
Euclidean distance 1 of the origin?

The de�nition of pseudorandomness is kind of a “master” de�nition that encom-
passes all of these statistical tests and more. After all, what is a statistical test, but a
polynomial-time procedure that obtains samples from a distribution and outputs a
yes/no decision? Pseudorandomness means that every statistical test that “passes”
uniform data will also “pass” pseudorandomly generated data.

5.2 Pseudorandom Generators in Practice

You are probably expecting to now see at least one example of a secure PRG. Unfortunately,
things are not so simple. We have no examples of secure PRGs! If it were possible to prove

1For one list of such tests, see h�p://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf.

87

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

that some functionG is a secure PRG, it would resolve the famous P vs NP problem —
the most famous unsolved problem in computer science (and arguably, all of mathematics).

The next best thing that cryptographic research can o�er are candidate PRGs, which
are conjectured to be secure. The best examples of such PRGs are the ones that have been
subjected to signi�cant public scrutiny and resisted all attempts at attacks so far.

In fact, the entire rest of this book is based on cryptography that is only conjectured
to be secure. How is this possible, given the book’s stated focus on provable security? As
you progress through the book, pay attention to how all of the provable security claims
are conditional — if X is secure then Y is secure. You will be able to trace back through
this web of implications and discover that there are only a small number of underlying
cryptographic primitives whose security is merely conjectured (PRGs are one example of
such a primitive). Everything else builds on these primitives in a provably secure way.

With that disclaimer out of the way, surely now you can be shown an example of a
conjectured secure PRG, right? There are indeed some conjectured PRGs that are simple
enough to show you at this point, but you won’t �nd them in the book. The problem is that
none of these PRG candidates are really used in practice. When you really need a PRG in
practice, you would actually use a PRG that is built from something called a block cipher
(which we won’t see until Chapter 6). A block cipher is conceptually more complicated
than a PRG, and can even be built from a PRG (in principle). That explains why this book
starts with PRGs. In practice, a block cipher is just a more useful object, so that is what
you would �nd easily available (even implemented with specialized CPU instructions in
most CPUs). When we introduce block ciphers (and pseudorandom functions), we will
discuss how they can be used to construct PRGs.

How NOT to Build a PRG

We can appreciate the challenges involved in building a PRG “from scratch” by �rst looking
at an obvious idea for a PRG and understanding why it’s insecure.

Example Let’s focus on the case of a length-doubling PRG. It should take in λ bits and output 2λ bits.
The output should look random when the input is sampled uniformly. A natural idea is for
the candidate PRG to simply repeat the input twice. After all, if the input s is random, then
s‖s is also random, too, right?

G(s) :
return s‖s

To understand why this PRG is insecure, �rst let me ask you whether the following strings
look like they were sampled uniformly from {0, 1}8:

11011101, 01010101, 01110111, 01000100, · · ·

Do you see any patterns? Every string has its �rst half equal to its second half. That is a
conspicuous pattern because it is relatively rare for a uniformly chosen string to have this
property.

88

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Of course, this is exactly what is wrong with this simplistic PRG G de�ned above. Every
output ofG has equal �rst/second halves. But it is rare for uniformly sampled strings to have
this property. We can formalize this observation as an attack against the PRG-security of G:

A

x ‖y :=qery()
return x

?
= y

The �rst line means to obtain the result of query and set its �rst half to be the string x and
its second half to be y. This calling program simply checks whether the output of query has
equal halves.

To complete the attack, we must show that this calling program has non-negligible bias
distinguishing the Lprg-? libraries.

I When linked to Lprg-real, the calling program receives outputs ofG, which always have
matching �rst/second halves. So Pr[A � LG

prg-real
⇒ 1] = 1. Below we have �lled in

Lprg-real with the details of our G algorithm:

A

x ‖y :=qery()
return x

?
= y

�

LG
prg-real

qery():
s ← {0, 1}λ

return s‖s

I When linked to Lprg-rand, the calling program receives uniform samples from {0, 1}2λ .

A

x ‖y :=qery()
return x

?
= y

�

LG
prg-rand

qery():
r ← {0, 1}2λ

return r

A outputs 1 whenever we sample a string from {0, 1}2λ with equal �rst/second halves.
What exactly is the probability of this happening? There are several ways to see that
the probability is 1/2λ (this is like asking the probability of rolling doubles with two
dice, but each die has 2λ sides instead of 6). Therefore, Pr[A � LG

prg-rand
⇒ 1] = 1/2λ .

The advantage of this adversary is 1 − 1/2λ which is certainly non-negligible — it does not
even approach 0 as λ grows. This shows that G is not a secure PRG.

This example illustrates how randomness/pseudorandomness is a property of the en-
tire process, not of individual strings. If you take a string of 1s and concatenate it with
another string of 1s, you get a long string of 1s. “Containing only 1s” is a property of
individual strings. If you take a “random string” and concatenate it with another “random
string,” you might not get a “random long string.” Being random is not a property of an
individual string, but of the entire process that generates it.

Outputs from this G have equal �rst/second halves, which is an obvious pattern. The
challenge of desiging a secure PRG is that its outputs must have no discernable pattern!
Any pattern will lead to an attack similar to the one shown above.

89

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Related Concept: Random Number Generation

The security of a PRG requires the seed to be chosen uniformly. In practice, the seed has to
come from somewhere. Generally a source of “randomness” is provided by the hardware
or operating system, and the process that generates these random bits is (confusingly)
called a random number generator (RNG).

In this course we won’t cover low-level random number generation, but merely point
out what makes it di�erent than the PRGs that we study:

I The job of a PRG is to take a small amount of “ideal” (in other words, uniform)
randomness and extend it.

I By contrast, an RNG usually takes many inputs over time and maintains an internal
state. These inputs are often from physical/hardware sources. While these inputs
are “noisy” in some sense, it is hard to imagine that they would be statistically uni-
form. So the job of the RNG is to “re�ne” (sometimes many) sources of noisy data
into uniform outputs.

5.3 Application: Shorter Keys in One-Time-Secret Encryption

We revisit the motivating example from the beginning of this chapter. Alice & Bob share
only a λ-bit key but want to encrypt a message of length λ+ `. The main idea is to expand
the key k into a longer string using a PRG G, and use the result as a one-time pad on the
(longer) plaintext. More precisely, let G : {0, 1}λ → {0, 1}λ+` be a PRG, and de�ne the
following encryption scheme:

Construction 5.2

(Pseudo-OTP)

K = {0, 1}λ

M = {0, 1}λ+`

C = {0, 1}λ+`

KeyGen:
k ← K
return k

Enc(k,m):
return G(k) ⊕m

Dec(k, c):
return G(k) ⊕ c

The resulting scheme will not have (perfect) one-time secrecy. That is, encryptions of
mL and mR will not be identically distributed in general. However, the distributions will
be indistinguishable if G is a secure PRG. The precise �avor of security obtained by this
construction is the following.

Definition 5.3 Let Σ be an encryption scheme, and let LΣ
ots-L

and LΣ
ots-R

be de�ned as in De�nition 2.6 (and
repeated below for convenience). Then Σ has (computational) one-time secrecy if LΣ

ots-L

∼∼∼

LΣ
ots-R

. That is, if for all polynomial-time distinguishers A, we have Pr[A � LΣ
ots-L
⇒ 1] ≈

Pr[A � LΣ
ots-R
⇒ 1].

LΣ
ots-L

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,mL)

return c

LΣ
ots-R

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,mR)

return c

90

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

This is essentially the same as De�nition 2.6, except we are using ∼∼∼ (indistinguisha-
bility) instead of ≡ (interchangeability).

Claim 5.4 Let pOTP denote Construction 5.2. If pOTP is instantiated using a secure PRG G then pOTP

has computational one-time secrecy.

Proof We must show thatLpOTP

ots-L

∼∼∼ L
pOTP

ots-R
. As usual, we will proceed using a sequence of hybrids

that begins at LpOTP

ots-L
and ends at LpOTP

ots-R
. For each hybrid library, we will demonstrate that

it is indistinguishable from the previous one. Note that we are allowed to use the fact
that G is a secure PRG. In practical terms, this means that if we can express some hybrid
library in terms of LG

prg-real
(one of the libraries in the PRG security de�nition), we can

replace it with its counterpart LG
prg-rand

(or vice-versa). The PRG security of G says that
such a change will be indistinguishable.

L
pOTP

ots-L
:

L
pOTP

ots-L

eavesdrop(mL,mR ∈ {0, 1}
λ+`):

k ← {0, 1}λ

c := G(k) ⊕mL

return c

The starting point isLpOTP

ots-L
, shown here with

the details of pOTP �lled in.

Lhyb-1:

eavesdrop(mL,mR):
z ←qery()
c := z ⊕mL
return c

�

LG
prg-real

qery():
s ← {0, 1}λ

return G(s)

The �rst hybrid step is to factor out the
computations involving G, in terms of the
LG

prg-real
library.

Lhyb-2:

eavesdrop(mL,mR):
z ←qery()
c := z ⊕mL
return c

�

LG
prg-rand

qery():
r ← {0, 1}λ+`

return r

From the PRG security of G, we may re-
place the instance of LG

prg-real
with LG

prg-rand
.

The resulting hybrid library Lhyb-2 is indis-
tinguishable from the previous one.

Lhyb-3:

LOTP

ots-L

eavesdrop(mL,mR):
z ← {0, 1}λ+`

c := z ⊕mL
return c

A subroutine has been inlined. Note that the
resulting library is precisely LOTP

ots-L
involv-

ing standard one-time pad on plaintexts
of size λ + `. We have essentially proven
that pOTP is indistinguishable from standard
OTP, and therefore we can apply the security
of OTP.

91

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Lhyb-4:

LOTP

ots-R

eavesdrop(mL,mR):
z ← {0, 1}λ+`

c := z ⊕ mR

return c

The (perfect) one-time secrecy of rOTP al-
lows us to replaceLOTP

ots-L
withLOTP

ots-R
; they are

interchangeable.

The rest of the proof is essentially a “mirror image” of the previous steps, in which we
perform the same steps but in reverse (and withmR being used instead ofmL).

Lhyb-5:

eavesdrop(mL,mR):
z ← qery()
c := z ⊕mR
return c

�

LG
prg-rand

qery():
r ← {0, 1}λ+`

return r

A statement has been factored out into a
subroutine, which happens to exactly match
LG

prg-rand
.

Lhyb-6:

eavesdrop(mL,mR):
z ←qery()
c := z ⊕mR
return c

�

LG
prg-real

qery():
s ← {0, 1}λ

return G(s)

From the PRG security of G, we can replace
LG

prg-rand
withLG

prg-real
. The resulting library

is indistinguishable from the previous one.

L
pOTP

ots-R
:

L
pOTP

ots-R

eavesdrop(mL,mR):
k ← {0, 1}λ

c := G(k) ⊕mR

return c

A subroutine has been inlined. The result is
L

pOTP

ots-R
.

Summarizing, we showed a sequence of hybrid libraries satisfying the following:

L
pOTP

ots-L
≡ Lhyb-1 ∼∼∼ Lhyb-2 ≡ Lhyb-3 ≡ Lhyb-4 ≡ Lhyb-5 ∼∼∼ Lhyb-6 ≡ L

pOTP

ots-R
.

Hence, LpOTP

ots-L

∼∼∼ L
pOTP

ots-R
, and pOTP has (computational) one-time secrecy. �

5.4 Extending the Stretch of a PRG

The stretch of a PRG measures how much longer its output is than its input. Can we use
a PRG with small stretch to construct a PRG with larger stretch? The answer is yes, but
only if you do it the right way!

Two Approaches to Increase Stretch

SupposeG : {0, 1}λ → {0, 1}2λ is a length-doubling PRG (i.e., a PRG with stretch λ). Below
are two ideas for constructing a PRG with longer stretch:

92

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

H1(s):
x ‖y := G(s)
u‖v := G(y)
return x ‖u‖v

H1

G G

λ

︸ ︷︷ ︸
3λ

H2(s):
x ‖y := G(s)
u‖v := G(y)
return x ‖ y ‖u‖v

H2

G G

λ

︸ ︷︷ ︸
4λ

Although the constructions are similar, only one of them is secure. Before reading any
further, can you guess which ofH1,H2 is a secure PRG and which is insecure? By carefully
comparing these two approaches, I hope you develop a better understanding of the PRG
security de�nition.

A Security Proof

I think it’s helpful to illustrate the “stragey” of security proofs by starting from the desired
conclusion and working backwards. What better way to do this than as a Socratic dialogue
in the style of Galileo?2

Salviati: I’m sure that H1 is the secure PRG.

Simplicio: If I understand the security de�nition for PRGs correctly, you mean that the
output of H1 looks indistinguishable from uniform, when the input to H1 is
uniform. Why do you say that?

Salviati: Simple! H1’s output consists of segments called x , u, and v . Each of these are
outputs of G, and since G itself is a PRG its outputs look uniform.

Simplicio: I wish I had your boldness, Salviati. I myself am more cautious. IfG is a secure
PRG, then its outputs are indeed indistinguishable from uniform, but surely
only when its input is uniform! Are you so sure that’s the case here?

Salviati: You raise a good point, Simplicio. In these endeavors it is always preferable to
err on the side of caution. When we want to claim that H1 is a secure PRG, we
consider the nature of its outputs when its seed s is uniform. Since H1 sends that
seed s directly into G, your concern is addressed.

Simplicio: Yes, I can see how in the expression x ‖y := G(s) the input toG is uniform, and
so its outputs x and y are indistinguishable from random. Since x is part of
H1’s output, we are making progress towards showing that the entire output of
H1 is indistinguishable from random! However, the output of H1 also contains
terms u and v . When I examine how they are generated, as u‖v := G(y), I
become concerned again. Surely y is not uniform, so I see no way to apply the
security if G!

2Don’t answer that.

93

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Salviati: Oh, bless your heart. The answer could not be any more obvious! It is true that
y is not uniformly distributed. But did you not just convince yourself that y is
indistinguishable from uniform? Should that su�ce?

Simplicio: Incredible! I believe I understand now. Let me try to summarize: We suppose
the input s to H1 is chosen uniformly, and examine what happens to H1’s out-
puts. In the expression x ‖y := G(s), the input to G is uniform, and thus x
and y are indistinguishable from uniform. Now, considering the expression
u‖v := G(y), the result is indistinguishable from a scenario in which y is truly
uniform. But if y were truly uniform, those outputs u andv would be indistin-
guishable from uniform! Altogether, x , u, and v (the outputs of H1) are each
indistinguishable from uniform!

I hope that was as fun for you as it was for me.3 The formal security proof and its sequence
of hybrids will follow the outline given in Simplicio’s summary. We start by applying the
PRG security de�nition to the �rst call to G, and replace its outputs with truly uniform
values. After this change, the input to the second call to G becomes uniform, allowing us
to apply the PRG security de�nition again.

Claim 5.5 If G is a secure length-doubling PRG, then H1 (de�ned above) is a secure (length-tripling)
PRG.

Proof One of the trickier aspects of this proof is that we are using a secure PRG G to prove
the security of another PRG H1. That means both LH1

prg-? and LG
prg-? will appear in this

proof. Both libraries/interfaces have a subroutine named “qery”, and we will rename
these subroutines qeryH1 and qeryG to disambiguate.

We want to show that LH1
prg-real

∼∼∼ L
H1
prg-rand

. As usual, we do so with a hybrid sequence.
Since we assume that G is a secure PRG, we are allowed to use the fact that LG

prg-real

∼∼∼

LG
prg-rand

.

LH
prg-real

:

L
H1
prg-real

qeryH1():
s ← {0, 1}λ

x ‖y := G(s)
u‖v := G(y)

}
H1(s)

return x ‖u‖v

The starting point is LH1
prg-real

, shown here with
the details of H1 �lled in.

qeryH1():
x ‖y :=qeryG ()
u‖v := G(y)
return x ‖u‖v

�

LG
prg-real

qeryG ():
s ← {0, 1}λ

return G(s)

The �rst invocation ofG has been factored out
into a subroutine. The resulting hybrid library
includes an instance of LG

prg-real
.

3If you’re wondering what the hell just happened: In Galileo’s 1632 book Dialogue Concerning the Two
Chief World Systems, he lays out the arguments for heliocentrism using a dialog between Salviati (who advo-
cated the heliocentric model) and Simplicio (who believed the geocentric model).

94

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

qeryH1():
x ‖y :=qeryG ()
u‖v := G(y)
return x ‖u‖v

�

LG
prg-rand

qeryG ():
r ← {0, 1}2λ

return r

From the PRG security ofG, we can replace the
instance of LG

prg-real
with LG

prg-rand
. The result-

ing hybrid library is indistinguishable.

qeryH1():

x ‖y ← {0, 1}2λ

u‖v := G(y)
return x ‖u‖v

A subroutine has been inlined.

qeryH1():

x ← {0, 1}λ

y ← {0, 1}λ

u‖v := G(y)
return x ‖u‖v

Choosing 2λ uniformly random bits and then
splitting them into two halves has exactly the
same e�ect as choosing λ uniformly random
bits and independently choosing λ more.

qeryH1():
x ← {0, 1}λ

u‖v :=qeryG ()
return x ‖u‖v

�

LG
prg-real

qeryG ():
s ← {0, 1}λ

return G(s)

The remaining appearance of G has been fac-
tored out into a subroutine. Now LG

prg-real

makes its second appearance.

qeryH1():
x ← {0, 1}λ

u‖v :=qeryG ()
return x ‖u‖v

�

LG
prg-rand

qeryG ():
r ← {0, 1}2λ

return r

Again, the PRG security of G lets us replace
LG

prg-real
with LG

prg-rand
. The resulting hybrid

library is indistinguishable.

qeryH1():
x ← {0, 1}λ

u‖v ← {0, 1}2λ

return x ‖u‖v

A subroutine has been inlined.

L
H1
prg-rand

:

L
H1
prg-rand

qeryH1():

r ← {0, 1}3λ

return r

Similar to above, concatenating λ uniform bits
with 2λ independently uniform bits has the
same e�ect as sampling 3λ uniform bits. The
result of this change is LH1

prg-rand
.

95

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Through this sequence of hybrid libraries, we showed that:

L
H1
prg-real

≡ Lhyb-1 ∼∼∼ Lhyb-2 ≡ Lhyb-3 ≡ Lhyb-4 ≡ Lhyb-5 ∼∼∼ Lhyb-6 ≡ Lhyb-7 ≡ L
H1
prg-rand

.

Hence, H1 is a secure PRG. �

Where the Proof Breaks Down for H2

The only di�erence between H1 and H2 is that the variable y is included in the output.
How does that minor change a�ect the reasoning that we applied to H1?

H2(s):
x ‖y := G(s)
u‖v := G(y)
return x ‖ y ‖u‖v

We argued that outputsu andv are indistinguishable from uniform since its inputy is also
indistinguishable from random. But it’s not quite so simple: A PRG’s output is indistin-
guishable from random if (1) its seed is uniform, and (2) the seed is not used for anything
else! This construction H2 violates condition (2) because it includes the “seed” y in the
output.

We can see this idea re�ected in the formal PRG de�nition. In Lprg-real, the seed s is
chosen uniformly, given as input to G, and then goes out of scope! If we try to reproduce
the security proof for H1 with H2 instead, we’ll get stuck when we are trying to factor out
the second call to G in terms of Lprg-real:

qeryH2():
x ← {0, 1}λ

y ← {0, 1}λ

u‖v := G(y)
return x ‖y‖u‖v

{

qeryH1():
x ← {0, 1}λ

u‖v :=qeryG ()
return x ‖ y ‖u‖v

�

LG
prg-real

qeryG ():
s ← {0, 1}λ

return G(s)︸ ︷︷ ︸
scope error! y unde�ned

We are trying to factor out the two highlighted lines into a separate library, renaming y
into s in the process. But s can only exist inside the private scope of the new library, while
there still exists a “dangling reference” y in the original library.

Speaking more generally about PRGs, suppose we have a call to G somewhere and
want to argue that its outputs are pseudorandom. We can only express this call to G in
terms of LG

prg-real
if the input to G is uniform and is used nowhere else. That’s not true

here – we can’t express one of the calls to G in terms of LG
prg-real

, so we can’t be sure that
the outputs of that call to G look random.

These subtle issues are not limited to PRGs. Every hybrid security proof in this course
includes steps where we factor out some statements in terms of some pre-existing library.
Don’t take these steps for granted! They will fail (often because of scoping issues) if the
construction isn’t using the building block correctly. You should always treat such “fac-
toring out” steps as “sanity checks” for your proof.

96

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

A Concrete A�ack on H2

So far, we’ve only demonstrated that we get stuck when trying to prove the security of
H2. But that doesn’t necessarily mean that H2 is insecure – it could mean that we’re just
not clever enough to see a di�erent security proof. To show that H2 is actually insecure,
we must demonstrate a successful distinguishing attack.

Attacking a PRG amounts to �nding “patterns” in their outputs. Does H2 have a pat-
tern in its outputs? Yes, in this case the pattern is that if you write the output in the
form x ‖y‖u‖v , then u‖v is always equal to G(y). The calling program can check for this
condition, which is unlikely to happen for truly uniform values.

You may wonder, is it legal for the calling program to compute G(y)? Well, G is a
publicly known algorithm (Kerckho�s’ principle!), andy is right there as part of the input.
Nothing prevents the calling program from running G “in its head.”4

Claim 5.6 Construction H2 is not a secure PRG, even if G is.

Proof Consider the following distinguisher A:

x ‖y‖u‖v :=qery()
return G(y)

?
= u‖v

When A is linked to LH2
prg-real

, the outputs indeed satisfy the condition G(y) = u‖v , so A
outputs true with probability 1.

When A is linked to LH2
prg-rand

, the outputs are truly uniform. It is helpful to imagine
x and y being chosen before u and v . As soon as y is chosen, the value G(y) is uniquely
determined, sinceG is a deterministic algorithm. ThenA will output true ifu‖v is chosen
exactly to equal this G(y). Since u and v are chosen uniformly, and are a total of 2κ bits
long, this event happens with probability 1/22κ .
A’s advantage is the di�erence in these probabilities: 1 − 1/22κ , which is non-

negligible. �

Discussion

In the attack on H2, we never tried to distinguish the output of G from uniform. H2 is
insecure even ifG is the best PRG in the world! It’s insecure because of the incorrect way
it uses G.

From now on in this book, we’ll be studying higher-level constructions that are assem-
bled from various building blocks — in this chapter, fancy PRGs constructed from simpler
PRGs. “Security” means: if the building blocks are secure then the construction is secure.
“Insecurity” means: even if the building blocks are secure, the construction can be insecure.
So when you’re showing insecurity, you shouldn’t directly attack the building blocks! You
should assume the building blocks are secure and attack the way that the building blocks
are being used.

4Compare to the case of distinguishing G(s) from uniform, for a secure G. The calling program knows
the algorithm G but doesn’t have the seed s — it only knows the output G(s). In the case of H2, the calling
program learns both y and G(y)!

97

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

5.5? Applications: Stream Cipher & Symmetric Ratchet

The PRG-feedback construction can be generalized in a natural way, by continuing to
feed part ofG’s output intoG again. The proof works in the same way as for the previous
construction — the security of G is applied one at a time to each application of G.

Claim 5.7 IfG is a secure length-doubling PRG, then for any n (polynomial function of λ) the following
construction Hn is a secure PRG with stretch nλ:

Hn(s):
s0 := s
for i = 1 to n:
si ‖ti := G(si−1)

return t1‖ · · · ‖tn ‖sn

G G G · · · G ← n copies of G

λ bits

· · ·︸ ︷︷ ︸
λ+nλ bits

The fact that this chain of PRGs can be extended inde�nitely gives another useful
functionality:

Definition 5.8

(Stream cipher)

A stream cipher is an algorithm G that takes a seed s and length ` as input, and outputs a
string. It should satisfy the following requirements:

1. G(s, `) is a string of length `.

2. If i < j, then G(s, i) is a pre�x of G(s, j).

3. For each n, the function G(·,n) is a secure PRG.

Because of the 2nd rule, you might want to think about a single in�nitely long string that is
the limit ofG(s,n) as n goes to in�nity. The �nite-length stringsG(s,n) are all the pre�xes
of this in�nitely long string.

The PRG-feedback construction can be used to construct a secure stream cipher in the
natural way: given seed s and length `, keep iterating the PRG-feedback main loop until
` bits have been generated.

G G G G · · ·

Symmetric Ratchet

Suppose Alice & Bob share a symmetric key k and are using a secure messaging app to
exchange messages over a long period of time. Later in the course we will see techniques
that Alice & Bob could use to securely encrypt many messages using a single key. How-
ever, suppose Bob’s device is compromised and an attacker learns k . Then the attacker
can decrypt all past, present, and future ciphertexts that it saw!

98

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Alice & Bob can protect against such a key compromise by using the PRG-feedback
stream cipher to constantly “update” their shared key. Suppose they do the following,
starting with their shared key k :

I They usek to seed a chain of length-doubling PRGs, and both obtain the same stream
of pseudorandom keys t1, t2,

I They use ti as a key to send/receive the ith message. The details of the encryption
are not relevant to this example.

I After making a call to the PRG, they erase the PRG input from memory, and only
remember the PRG’s output. After using ti to send/receive a message, they also
erase it from memory.

This way of using and forgetting a sequence of keys is called a symmetric ratchet.

Construction 5.9

(Symm Ratchet)

s0 = k
for i = 1 to∞:
si ‖ti := G(si−1)
erase si−1 from memory
use ti to encrypt/decrypt the ith message
erase ti from memory

G G G G · · ·

s0 s1 s2 s3

t1 t2 t3 t4

Suppose that an attacker compromises Bob’s device aftern ciphertexts have been sent. The
only value residing in memory is sn , which the attacker learns. SinceG is deterministic, the
attacker can now compute tn+1, tn+2, . . . in the usual way and decrypt all future ciphertexts
that are sent.

However, we can show that the attacker learns no information about t1, . . . , tn from
sn , which implies that the previous ciphertexts remain safe. By compromising the key sn ,
the adversary only compromises the security of future messages, but not past messages.
Sometimes this property is called forward secrecy, meaning that messages in the present
are protected against a key-compromise that happens in the future.

This construction is called a ratchet, since it is easy to advance the key sequence in the
forward direction (from sn to sn+1) but hard to reverse it (from sn+1 to sn). The exercises
explore the problem of explicitly reversing the ratchet, but the more relevant property
for us is whether the attacker learns anything about the ciphertexts that were generated
before the compromise.

Claim 5.10 If the symmetric ratchet (Construction 5.9) is used with a secure PRG G and an encryption
scheme Σ that has uniform ciphertexts (and Σ.K = {0, 1}λ), then the �rst n ciphertexts are
pseudorandom, even to an eavesdropper who compromises the key sn .

Proof We are considering an attack scenario in which n plaintexts are encrypted, and the adver-
sary sees their ciphertexts as well as the ratchet-key sn . This situation is captured by the
following library:

99

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

attack(m1, . . . ,mn):
s0 ← {0, 1}

λ

for i = 1 to n:
si ‖ti := G(si−1)
ci ← Σ.Enc(ti ,mi)

return (c1, . . . , cn , sn)

G G G · · · G

s0

· · ·

t1

Enc

c1

t2

Enc

c2

t3

Enc

c3

tn

Enc

cn si

As we have seen, the shaded box (the process that computes t1, . . . , tn from s0) is actually
a PRG. Let us rewrite the library in terms of this PRG Hn :

attack(m1, . . . ,mn):
s0 ← {0, 1}

λ

t1‖ · · · ‖tn ‖sn := Hn(s0)

for i = 1 to n:
ci ← Σ.Enc(ti ,mi)

return (c1, . . . , cn , sn)

G G G · · · G

s0

· · ·

t1

Enc

c1

t2

Enc

c2

t3

Enc

c3

tn

Enc

cn si

Hn

Now, we can apply the PRG security of Hn and instead choose t1, . . . , tn and sn uniformly.
This change is indistinguishable, by the security of the PRG. Note that we have not written
out the standard explicit steps (factor out the �rst two lines of attack in terms of Lprg-real,
replace with Lprg-rand, and inline).

attack(m1, . . . ,mn):
for i = 1 to n:
ti ← {0, 1}

λ

sn ← {0, 1}
λ

for i = 1 to n:
ci ← Σ.Enc(ti ,mi)

return (c1, . . . , cn , sn)

≡

attack(m1, . . . ,mn):
for i = 1 to n:

ti ← {0, 1}
λ

ci ← Σ.Enc(ti ,mi)

sn ← {0, 1}
λ

return (c1, . . . , cn , sn)

At this point, the encryption scheme is being used “as intended,” meaning that we generate
its keys ti uniformly/indepenendtly, and use each key only for one encryption and nothing
else. Formally speaking, this means we can factor out the body of the for-loop in terms of
Lots$-real:

attack(m1, . . . ,mn):
for i = 1 to n:

ci ← ctxt(mi)

sn ← {0, 1}
λ

return (c1, . . . , cn , sn)

�

LΣ
ots$-real

ctxt(m ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,m)
return c

100

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

We can now replace Lots$-real with Lots$-rand and inline the subroutine (without showing
the intermediate library). The result is:

attack(m1, . . . ,mn):
for i = 1 to n:

ci ← Σ.C
sn ← {0, 1}

λ

return (c1, . . . , cn , sn)

This �nal library is indistinguishable from the �rst one. As promised, we showed that the
attacker cannot distinguish the �rst n ciphertexts from random values, even when seeing
sn . �

This proof used the uniform-ciphertexts property, but the same logic applies to basi-
cally any encryption property you care about — just imagine factoring out the encryption
steps in terms of a di�erent library than Lots$-real.

Exercises

5.1. Let G : {0, 1}λ → {0, 1}λ+` be an injective (i.e., 1-to-1) PRG. Consider the following
distinguisher:

A

x :=qery()
for all s ′ ∈ {0, 1}λ :

if G(s ′) = x then return 1
return 0

(a) What is the advantage of A in distinguishing LG
prg-real

and LG
prg-rand

? Is it negligible?

(b) Does this contradict the fact that G is a PRG? Why or why not?

(c) What happens to the advantage if G is not injective?

5.2. LetG : {0, 1}λ → {0, 1}λ+` be an injective PRG, and consider the following distinguisher:

A

x :=qery()
s ′← {0, 1}λ

return G(s ′)
?
= x

What is the advantage of A in distinguishing LG
prg-real

from LG
prg-rand

?

Hint: WhencomputingPr[A�LG
prg-randoutputs1],separatetheprobabilitiesbasedonwhetherxisa

possibleoutputofGornot.

101

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

5.3. For any PRG G : {0, 1}λ → {0, 1}λ+` there will be many strings in {0, 1}λ+` that are
impossible to get as output of G. Let S be any such set of impossible G-outputs, and
consider the following adversary that has S hard-coded:

A

x :=qery()

return x
?
∈ S

What is the advantage of A in distinguishing LG
prg-real

from LG
prg-rand

? Why does an ad-
versary like this one not automatically break every PRG?

5.4. Show that the scheme from Section 5.3 does not have perfect one-time secrecy, by showing
that there must exist two messagesm1 andm2 whose ciphertext distributions di�er.

Hint:

Theremustexiststringss1,s2∈{0,1}λ+`wheres1∈im(G),ands2<im(G).Usethesetwostrings
to�ndtwomessagesm1andm2whoseciphertextdistributionsassigndi�erentprobabilitiestos1
ands2.Notethatitislegitimateforanattackerto“know”s1ands2,asthesearepropertiesofG
alone,anddonotdependontherandomchoicesmade“atruntime”—whenthelibraryexecutes
theencryptionalgorithms.

5.5. The proof of Claim 5.5 applies the PRG security rule to both of the calls toG, starting with
the �rst one. Describe what happens when you try to apply the PRG security ofG to these
two calls in the opposite order. Does the proof still work, or does it work only in the order
that was presented?

5.6. Let `′ > ` > 0. Extend the “PRG feedback” construction to transform any PRG of stretch
` into a PRG of stretch `′. Formally de�ne the new PRG and prove its security using the
security of the underlying PRG.

5.7. Prove that if G is a secure PRG, then so is the function H (s) = G(s).

5.8. LetG : {0, 1}λ → {0, 1}3λ be a secure length-tripling PRG. For each function below, state
whether it is also a secure PRG. If the function is a secure PRG, give a proof. If not, then
describe a successful distinguisher and explicitly compute its advantage. When we write
a‖b‖c := G(s), each of a,b, c have length λ.

(a)
H (s):
x ‖y‖z := G(s)
return G(x)‖G(z)

(b)
H (s):
x ‖y‖z := G(s)
return x ‖y

(c)

H (s):
x := G(s)
y := G(s)
return x ‖y

(d)

H (s):
x := G(s)
y := G(0λ)
return x ‖y

(e)

H (s):
x := G(s)
y := G(0λ)
return x ⊕ y

102

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

(f)

// H : {0, 1}2λ → {0, 1}3λ

H (sL ‖sR):
x := G(sL)
y := G(sR)
return x ⊕ y

(g)

// H : {0, 1}2λ → {0, 1}6λ

H (sL ‖sR):
x := G(sL)
y := G(sR)
return x ‖y

5.9. LetG : {0, 1}λ → {0, 1}3λ be a secure length-tripling PRG. Prove that each of the follow-
ing functions is also a secure PRG:

(a)

// H : {0, 1}2λ → {0, 1}4λ

H (sL ‖sR):
y := G(sR)
return sL ‖y

Note that H includes half of its input directly in the output. How do you reconcile this
fact with the conclusion of Exercise 5.14(b)?

(b)

// H : {0, 1}2λ → {0, 1}3λ

H (sL ‖sR):
return G(sL)

? 5.10. LetG be a secure length-doubling PRG. One of the following constructions is a secure PRG
and one is not. Which is which? Give a security proof for one and an attack for the other.

H1(s):
x ‖y := G(s)
u‖v := G(y)
return (x ⊕ y)‖u‖v

H1

G G

⊕

H2(s):
x ‖y := G(s)
u‖v := G(y)
return x ‖(y ⊕ u)‖v

H2

G G

⊕

Hint:

Usuallywhensomethingisinsecure,it’sinsecureforanychoiceofbuildingblock.Inthiscase,the
attackonlyworksforcertainG.Basically,youwillneedtoconstructaparticularG,provethatit’s
asecurePRG,andthenprovethatH1/H2isnotsecurewhenusingthisG.

5.11. A frequently asked question in cryptography forums is whether it’s possible to determine
which PRG implementation was used by looking at output samples.

Let G1 and G2 be two PRGs with matching input/output lengths. De�ne two libraries
L
G1
which-prg

and LG2
which-prg

as follows:

L
G1
which-prg

qery():
s ← {0, 1}λ

return G1 (s)

L
G2
which-prg

qery():
s ← {0, 1}λ

return G2 (s)

103

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

Prove that if G1 and G2 are both secure PRGs, then LG1
which-prg

∼∼∼ L
G2
which-prg

— that is, it is
infeasible to distinguish which PRG was used simply by receiving output samples.

5.12. LetG1 andG2 be deterministic functions, each accepting inputs of length λ and producing
outputs of length 3λ.

(a) De�ne the function H (s1‖s2) = G1(s1) ⊕ G2(s2). Prove that if either of G1 or G2 (or
both) is a secure PRG, then so is H .

(b) What can you say about the simpler construction H (s) = G1(s) ⊕ G2(s), when one of
G1,G2 is a secure PRG?

? 5.13. Prove that if PRGs exist, then P , NP.
Hint:

{y|∃s:G(s)=y}∈NP.Provethecontrapositive!UsethepowerfulassumptionthatP=NPto
constructane�cientadversarytoattackanycandidatePRG.

5.14. (a) Let f be any function. Show that the following function G is not a secure PRG, no
matter what f is. Describe a successful distinguisher and explicitly compute its ad-
vantage:

G(s):
return s‖ f (s)

(b) Let G : {0, 1}λ → {0, 1}λ+` be a candidate PRG. Suppose there is a polynomial-time
algorithm V with the property that it inverts G with non-negligible probability. That
is,

Pr
s←{0,1}λ

[
V (G(s)) = s

]
is non-negligible.

Show that if an algorithm V exists with this property, then G is not a secure PRG. In
other words, construct a distinguisher contradicting the PRG-security of G and show
that it achieves non-negligible distinguishing advantage.
Note: Don’t assume anything about the output of V other than the property shown
above. In particular, V might very frequently output the “wrong” thing.

5.15. Let s0, s1, . . . and t1, t2, . . . be de�ned as in the symmetric ratchet (Construction 5.9).

(a) Prove that if G is a secure PRG then the following two libraries are indistinguishable,
for any polynomial-time algorithm A:

Lle�

test():
sn−1 ← {0, 1}

λ

sn ‖tn := G(sn−1)
t̃ = A(sn)

return t̃
?
= tn

Lright

test():
sn ← {0, 1}

λ

t̃ = A(sn)
tn ← {0, 1}

λ

return t̃
?
= tn

(b) What is Pr[test outputs true] in Lright?
(c) Prove that for any polynomial-time algorithm A, Pr[A(sn) = tn] is negligible, where

sn , tn are generated as in the symmetric ratchet construction.

104

Draft: January 3, 2021 CHAPTER 5. PSEUDORANDOM GENERATORS

(d) Prove that for any polynomial-time algorithm A, Pr[A(sn) = sn−1] is negligible. In
other words, “turning the ratchet backwards” is a hard problem.

Hint:

theproofshouldbeafewlines,adirectcorollaryofpart(c).

105

6 Pseudorandom Functions & Block

Ciphers

Imagine if Alice & Bob had an in�nite amount of shared randomness — not just a short
key. They could split it up into λ-bit chunks and use each one as a one-time pad whenever
they want to send an encrypted message of length λ.

Alice could encrypt by saying, “hey Bob, this message is encrypted with one-time pad
using chunk #674696273 as key.” Bob could decrypt by looking up location #674696273
in his copy of the shared randomness. As long as Alice doesn’t repeat a key/chunk, an
eavesdropper (who doesn’t have the shared randomness) would learn nothing about the
encrypted messages. Although Alice announces (publicly) which location/chunk was used
as each one-time pad key, that information doesn’t help the attacker know the value at that
location.

1 1100100010 · · ·

2 0110000101 · · ·
...

...

674696273 0011100001 · · ·
...

...

Alice Bob
“this message encrypted under OTP key #674696273”

0111101111 · · ·

Eve

???

It is silly to imagine an in�nite amount of shared randomness. However, an expo-
nential amount of something is often just as good as an in�nite amount. A shared table
containing “only” 2λ one-time pad keys would be quite useful for encrypting as many
messages as you could ever need.

A pseudorandom function (PRF) is a tool that allows Alice & Bob to achieve the
e�ect of such an exponentially large table of shared randomness in practice. In this chapter
we will explore PRFs and their properties. In a later chapter, after introducing new security
de�nitions for encryption, we will see that PRFs can be used to securely encrypt many
messages under the same key, following the main idea illustrated above.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

6.1 Definition

Continuing our example, imagine a huge table of shared data stored as an array T , so the
ith item is referenced as T [i]. Instead of thinking of i as an integer, we can also think of
i as a binary string. If the array has 2in items, then i will be an in-bit string. If the array
contains strings of length “out”, then the notationT [i] is like a function that takes an input
from {0, 1}in and gives an output from {0, 1}out .

A pseudorandom function emulates the functionality of a huge array. It is a function F
that takes an input from {0, 1}in and gives an output from {0, 1}out . However, F also takes
an additional argument called the seed, which acts as a kind of secret key.

The goal of a pseudorandom function is to “look like” a uniformly chosen array /
lookup table. Such an array can be accessed through the lookup subroutine of the fol-
lowing library:

for x ∈ {0, 1}in:
T [x] ← {0, 1}out

lookup(x ∈ {0, 1}in):
return T [x]

As you can see, this library initially �lls up the array T with uniformly random data, and
then allows the calling program to access any position in the array.

A pseudorandom function should produce indistinguishable behavior, when it is used
with a uniformly chosen seed. More formally, the following library should be indistin-
guishable from the one above:

k ← {0, 1}λ

lookup(x ∈ {0, 1}in):
return F (k,x)

Note that the �rst library samples out · 2in bits uniformly at random (out bits for each of
2in entries in the table), while the second library samples only λ bits (the same k is used
for all invocations of F). Still, we are asking for the two libraries to be indistinguishable.

This is basically the de�nition of a PRF, with one technical caveat. We want to allow
situations like in > λ, but in those cases the �rst library runs in exponential time. It is
generally convenient to build our security de�nitions with libraries that run in polynomial
time.1 We �x this by taking advantage of the fact that, no matter how big the table T is
meant to be, a polynomial-time calling program will only access a polynomial amount of
it. In some sense it is “overkill” to actually populate the entire tableT upfront. Instead, we
can populate T in a lazy / on-demand way. T initially starts uninitialized, and its values
are only assigned as the calling program requests them. This changes when each T [x] is
sampled (if at all), but does not change how it is sampled (i.e., uniformly & independently).
This also changes T from being a typical array to being an associative array (“hash table”
or “dictionary” data structure), since it only maps a subset of {0, 1}in to values in {0, 1}out .

1When we use a pseudorandom function as a component in other constructions, the libraries for PRF
security will show up as calling programs of other libraries. The de�nition of indistinguishability requires all
calling programs to run in polynomial time.

107

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Definition 6.1

(PRF security)

Let F : {0, 1}λ × {0, 1}in → {0, 1}out be a deterministic function. We say that F is a secure
pseudorandom function (PRF) if LF

prf-real

∼∼∼ L
F
prf-rand

, where:

LF
prf-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}in):
return F (k,x)

LF
prf-rand

T := empty assoc. array

lookup(x ∈ {0, 1}in):
if T [x] unde�ned:
T [x] ← {0, 1}out

return T [x]

Discussion, Pitfalls

The name “pseudorandom function” comes from the perspective of viewing T not as an
(associative) array, but as a function T : {0, 1}in → {0, 1}out . There are 2out ·2in possible
functions for T (an incredibly large number), and Lprf-rand chooses a “random function”
by uniformly sampling its truth table as needed.

For each possible seed k , the residual function F (k, ·) is also a function from {0, 1}in →
{0, 1}out . There are “only” 2λ possible functions of this kind (one for each choice of k),
and Lprf-real chooses one of these functions randomly. In both cases, the libraries give the
calling program input/output access to the function that was chosen. You can think of this
in terms of the picture from Section 5.1, but instead of strings, the objects are functions.

Note that even in the case of a “random function” (Lprf-rand), the function T itself is
still deterministic! To be precise, this library chooses a deterministic function, uniformly,
from the set of all possible deterministic functions. But once it makes this choice, the
input/output behavior ofT is �xed. If the calling program calls lookup twice with the same
x , it receives the same result. The same is true inLprf-real, since F is a deterministic function
and k is �xed throughout the entire execution. To avoid this very natural confusion, it
is perhaps better to think in terms of “randomly initialized lookup tables” rather than
“random functions.”

How NOT to Build a PRF

We can appreciate the challenges involved in building a PRF by looking at a natural ap-
proach that doesn’t quite work.

Example Suppose we have a length-doubling PRGG : {0, 1}λ → {0, 1}2λ and try to use it to construct
a PRF F as follows:

F (k,x):
return G(k) ⊕ x

You might notice that all we have done is rename the encryption algorithm of “pseudo-OTP”
(Construction 5.2). We have previously argued that this algorithm is a secure method for one-
time encryption, and that the resulting ciphertexts are pseudorandom. Is this enough for a
secure PRF? No, we can attack the security of this PRF.

108

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Attacking F means designing distinguisher that behaves as di�erently as possible in the
presence of the two LF

prf-?
libraries. We want to show that F is insecure even if G is an

excellent PRG. We should not try to base our attack on distinguishing outputs of G from
random. Instead, we must try to break the inappropriate way thatG is used to construct
a PRF.

The distinguisher must use the interface of the Lprf-? libraries — i.e., make some calls to
the lookup subroutine and output 0 or 1 based on the answers it gets. The lookup subroutine
takes an argument, so the distinguisher has to choose which arguments to use.

One observation we can make is that if a calling program sees only one value of the form
G(k) ⊕ x , it will look pseudorandom. This is essentially what we showed in Section 5.3. So we
should be looking for a calling program that makes more than one call to lookup.

If we make two calls to lookup — say, on inputs x1 and x2 — the responses from Lprf-real

will be G(k) ⊕ x1 and G(k) ⊕ x2. To be a secure PRF, these responses must look independent
and uniform. Do they? They actually have a pattern that the calling program can notice:
their xor is always x1 ⊕ x2, a value that is already known to the calling program.

We can condense all of our observations into the following distinguisher:

A

pick x1,x2 ∈ {0, 1}
2λ arbitrarily so that x1 , x2

z1 := lookup(x1)
z2 := lookup(x2)
return z1 ⊕ z2

?
= x1 ⊕ x2

Let’s compute its advantage in distinguishing LF
prf-real

from LF
prf-rand

by considering A’s be-
havior when linked to these two libraries:

A

pick x1 , x2 ∈ {0, 1}
2λ

z1 := lookup(x1)
z2 := lookup(x2)
return z1 ⊕ z2

?
= x1 ⊕ x2

�

LF
prf-real

k ← {0, 1}λ

lookup(x):
return G(k) ⊕ x // F (k,x)

WhenA is linked to LF
prf-real

, the library will choose a key k . Then z1 is set toG(k) ⊕ x1 and
z2 is set toG(k) ⊕ x2. So z1 ⊕ z2 is always equal to x1 ⊕ x2, andA always outputs 1. That is,

Pr[A � LF
prf-real

⇒ 1] = 1.

A

pick x1 , x2 ∈ {0, 1}
2λ

z1 := lookup(x1)
z2 := lookup(x2)
return z1 ⊕ z2

?
= x1 ⊕ x2

�

LF
prf-rand

T := empty assoc. array

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}2λ

return T [x]

109

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

When A is linked to LF
prf-rand

, the responses of the two calls to lookup will be chosen uni-
formly and independently because lookup is being called on distinct inputs. Consider the
moment in time when the second call to lookup is about to happen. At that point, x1, x2, and
z1 have all been determined, while z2 is about to be chosen uniformly by the library. Using
the properties of xor, we see that A will output 1 if and only if z2 is chosen to be exactly the
value x1 ⊕ x2 ⊕ z1. This happens only with probability 1/22λ . That is,

Pr[A � LF
prf-rand

⇒ 1] = 1/22λ .

The advantage of A is therefore 1 − 1/22λ which is certainly non-negligible since it doesn’t
even approach 0. This shows that F is not a secure PRF.

At a more philosophical level, we wanted to identify exactly how G is being used in an
inappropriate way. The PRG security libraries guarantee security when G’s seed is chosen
freshly for each call to G. This construction of F violates that rule and allows the same seed
to be used twice in di�erent calls to G, where the results are supposed to look independent.

This example shows the challenge of building a PRF. Even though we know how to
make any individual output pseudorandom, it is di�cult to make all outputs collectively
appear independent, when in reality they are derived from a single short seed.

6.2 PRFs vs PRGs; Variable-Hybrid Proofs

In this section we show that a PRG can be used to construct a PRF, and vice-versa. The
construction of a PRG from PRF is practical, and is one of the more common ways to obtain
a PRG in practice. The construction of a PRF from PRG is more of theoretical interest and
does not re�ect how PRFs are designed in practice.

Constructing a PRG from a PRF

As promised, a PRF can be used to construct a PRG. The construction is quite natural. For
simplicity, suppose we have a PRF F : {0, 1}λ × {0, 1}λ → {0, 1}λ (i.e., in = out = λ). We
can build a length-doubling PRG in the following way:

Construction 6.2

(Counter PRG)

G(s):
x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

There is nothing particularly special about the inputs 0 · · · 00 and 0 · · · 01 to F . All that
matters is that they are distinct. The construction can be extended to easily give more than
2 blocks of output, by treating the input to F as a simple counter (hence the name of this
construction).

The guarantee of a PRF is that when its seed is chosen uniformly and it is invoked on
distinct inputs, its outputs look independently uniform. In particular, its output on inputs
0 · · · 00 and 0 · · · 01 are indistinguishable from uniform. Hence, concatenating them gives
a string which is indistinguishable from a uniform 2λ-bit string.

110

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

That really is all there is to the security of this construction, but unfortunately there is
a slight technical issue which makes the security proof more complicated than you might
guess. We will have to introduce a new technique of variable hybrids to cope with it.

Claim 6.3 If F is a secure PRF, then the counter PRG construction G above is a secure PRG.

Proof In order to prove that G is a secure PRG, we must prove that the following libraries are
indistinguishable:

LG
prg-real

qery():
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)

 // G(s)
return x ‖y

LG
prg-rand

qery():
r ← {0, 1}2λ

return r

During the proof, we are allowed to use the fact that F is a secure PRF. That is, we can use
the fact that the following two libraries are indistinguishable:

LF
prf-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}in):
return F (k,x)

LF
prf-rand

T := empty assoc. array

lookup(x ∈ {0, 1}in):
if T [x] unde�ned:
T [x] ← {0, 1}out

return T [x]

The inconvenience in the proof stems from a mismatch of the s variable in Lprg-real and
the k variable in Lprf-real. In Lprg-real, s is local to the qery subroutine. Over the course
of an execution, s will take on many values. Since s is used as the PRF seed, we must write
the calls to F in terms of the lookup subroutine of Lprf-real. But in Lprf-real the PRF seed
is �xed for the entire execution. In other words, we can only use Lprf-real to deal with a
single PRF seed at a time, but Lprg-real deals with many PRG seeds at a time.

To address this, we will have to apply the security of F (i.e., replace Lprf-real with
Lprf-rand) many times during the proof — in fact, once for every call to qery made by
the calling program. Previous security proofs had a �xed number of hybrid steps (e.g., the
proof of Claim 5.5 used 7 hybrid libraries to show Lprg-real

∼∼∼ Lhyb-1

∼∼∼ · · · ∼∼∼ Lhyb-7

∼∼∼

Lprg-rand). This proof will have a variable number of hybrids that depends on the
calling program. Speci�cally, we will prove

LG
prg-real

∼∼∼ Lhyb-1

∼∼∼ · · · ∼∼∼ Lhyb- q ∼∼∼ L
G
prg-rand

,

where q is the number of times the calling program calls qery.

111

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Don’t be overwhelmed by all these hybrids. They all follow a simple pattern. In fact,
the ith hybrid looks like this:

Lhyb-i :

count := 0

qery():
count := count + 1
if count 6 i :
r ← {0, 1}2λ

return r
else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

In other words, the hybrid libraries all di�er in the value i that is inserted into the code
above. If you’re familiar with C compilers, think of this as adding “#define i 427” to the
top of the code above, to obtain Lhyb-427.

First note what happens for extreme choices of i :

I In Lhyb-0, the if-branch is never taken (count 6 0 is never true). This library behaves
exactly like LG

prg-real
by giving PRG outputs on every call to qery.

I If q is the total number of times that the calling program calls qery, then in Lhyb-q ,
the if-branch is always taken (count 6 q is always true). This library behaves exactly
like LG

prg-rand
by giving truly uniform output on every call to qery.

In general, Lhyb-i will respond to the �rst i calls to qery by giving truly random output.
It will respond to all further calls by giving outputs of our PRG construction.

We have argued that LG
prg-real

≡ Lhyb-0 and LG
prg-rand

≡ Lhyb-q . To complete the proof,
we must show that Lhyb-(i − 1) ∼∼∼ Lhyb-i for all i . The main reason for going to all this
trouble of de�ning so many hybrid libraries is that Lhyb-(i − 1) and Lhyb-i are completely
identical except in how they respond to the ith call to qery. This di�erence involves a
single call to the PRG (and hence a single PRF seed), which allows us to apply the security
of the PRF.

In more detail, let i be arbitrary, and consider the following sequence of steps starting
with Lhyb-(i − 1):

112

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
s∗ ← {0, 1}λ

x := F (s∗, 0 · · · 00)
y := F (s∗, 0 · · · 01)
return x ‖y

else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

We have taken Lhyb-(i − 1)
and simply expanded the
else-branch (count > i) into
two subcases (count = i and
count > i). However, both
cases lead to the same block of
code (apart from a change to a
local variable’s name), so the
change has no e�ect on the
calling program.

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
x := lookup(0 · · · 00)
y := lookup(0 · · · 01)
return x ‖y

else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

�

LF
prf-real

k ← {0, 1}λ

lookup(x):
return F (k,x)

We have factored out the calls
to F that use seed s∗ (corre-
sponding to the count = i
case) in terms of Lprf-real. This
change no e�ect on the calling
program.

113

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
x := lookup(0 · · · 00)
y := lookup(0 · · · 01)
return x ‖y

else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

�

LF
prf-rand

T := empty assoc. array

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}λ

return T [x]

From the fact that F is a secure
PRF, we can replace LF

prf-real

with LF
prf-rand

, and the overall
change is indistinguishable.

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
x := lookup(0 · · · 00)
y := lookup(0 · · · 01)
return x ‖y

else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

�

lookup(x):
r ← {0, 1}λ

return r

Since count = i happens only
once, only two calls to lookup
will be made across the entire
lifetime of the library, and they
are on distinct inputs. There-
fore, the if-branch in lookup
will always be taken, and T is
never needed (it is only needed
to “remember” values and give
the same answer when the
same x is used twice as argu-
ment to lookup). Simplifying
the library therefore has no ef-
fect on the calling program:

114

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
x ← {0, 1}λ

y ← {0, 1}λ

return x ‖y
else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

Inlining the subroutine has no
e�ect on the calling program.
The resulting library responds
with uniformly random output
to the �rst i calls to qery, and
responds with outputs of our
PRG G to the others. Hence,
this library has identical be-
havior to Lhyb-i .

We showed that Lhyb-(i − 1) ∼∼∼ Lhyb-i , and therefore:

LG
prg-real

≡ Lhyb-0

∼∼∼ Lhyb-1

∼∼∼ · · · ∼∼∼ Lhyb-q ≡ L
G
prg-rand

This shows that LG
prg-real

∼∼∼ L
G
prg-rand

, so G is a secure PRG. �

? A Theoretical Construction of a PRF from a PRG

We have already seen that it is possible to feed the output of a PRG back into the PRG
again, to extend its stretch (Claim 5.7). This is done by making a long chain (like a linked
list) of PRGs. The trick to constructing a PRF from a PRG is to chain PRGs together in a
binary tree (similar to Exercise 5.8(a)). The leaves of the tree correspond to �nal outputs
of the PRF. If we want a PRF with an exponentially large domain (e.g., in = λ), the binary
tree itself is exponentially large! However, it is still possible to compute any individual
leaf e�ciently by simply traversing the tree from root to leaf. This tree traversal itself is
the PRF algorithm. This construction of a PRF is due to Goldreich, Goldwasser, and Micali,
in the paper that de�ned the concept of a PRF.

115

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

G

G G

G G G G

G G G G G G G G

0 1

00 01 10 11

000 001 010 011 100 101 110 111

ϵ

...
...

...
...

...
...

...
...

k

length-
doubling PRG

G

λ

λ λGL GR

Imagine a complete binary tree of height in (in will be the input length of the PRF).
Every node in this tree has a position which can be written as a binary string. Think of
a node’s position as the directions to get there starting at the root, where a 0 means “go
left” and 1 means “go right.” For example, the root has position ϵ (the empty string), the
right child of the root has position 1, etc.

The PRF construction works by assigning a label to every node in the tree, using the
a length-doubling PRG G : {0, 1}λ → {0, 1}2λ . For convenience, we will write GL(k) and
GR(k) to denote the �rst λ bits and last λ bits of G(k), respectively. Labels in the tree are
λ-bit strings, computed according to the following two rules:

1. The root node’s label is the PRF seed.

2. If the node at position p has label v , then its left child (at position p‖0) gets label
GL(v), and its right child (at position p‖1) gets label GR(v).

In the picture above, a node’s label is the string being sent on its incoming edge. The tree
has 2in leaves, whose positions are the strings {0, 1}in. We de�ne F (k,x) to be the label of
node/leaf x . To compute this label, we can traverse the tree from root to leaf, taking left
and right turns at each node according to the bits of x and computing the labels along that
path according to the labeling rule. In the picture above, the highlighted path corresponds
to the computation of F (k, 1001 · · ·).

It is important to remember that the binary tree is a useful conceptual tool, but it is ex-
ponentially large in general. Running the PRF on some input does not involve computing
labels for the entire tree, only along a single path from root to leaf.

116

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Construction 6.4

(GGM PRF)

in = arbitrary
out = λ

F (k,x ∈ {0, 1}in):
v := k
for i = 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

Claim 6.5 If G is a secure PRG, then Construction 6.4 is a secure PRF.

Proof We prove the claim using a sequence of hybrids. The number of hybrids in this case
depends on the input-length parameter in. The hybrids are de�ned as follows:

Lhyb-d

T := empty assoc. array

qery(x):
p := �rst d bits of x
if T [p] unde�ned:
T [p] ← {0, 1}λ

v := T [p]
for i = d + 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

The hybrids di�er only in their hard-coded value of d . We will show that

LF
prf-real

≡ Lhyb-0 ∼∼∼ Lhyb-1 ∼∼∼ · · · ∼∼∼ Lhyb-in ≡ L
F
prf-rand

.

We �rst start by understanding the behavior of Lhyb-d for extreme choices of d . Simpli-
�cations to the code are shown on the right.

Lhyb-0

T := empty assoc. array k := unde�ned
// k is alias for T [ϵ]

lookup(x):
p := �rst 0 bits of x p = ϵ
if T [p] unde�ned: if k unde�ned:
T [p] ← {0, 1}λ k ← {0, 1}λ

v := T [p]
for i = 1 to in:

if xi = 0 then v := GL(v)

 v
:= F (k,x)

if xi = 1 then v := GR(v)
return v return F (k,x)

In Lhyb-0, we always have p = ϵ ,
so the only entry ofT that is ac-
cessed is T [ϵ]. Then renaming
T [ϵ] to k , we see that Lhyb-0 ≡

LF
prf-real

. The only di�erence is
when the PRF seed k (T [ϵ]) is
sampled: eagerly at initializa-
tion time in LF

prf-real
vs. at the

last possible minute in Lhyb-0.

117

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Lhyb-in

T := empty assoc. array

lookup(x):
p := �rst in bits of x p = x
if T [p] unde�ned: if T [x] unde�ned:
T [p] ← {0, 1}λ T [x] ← {0, 1}λ

v := T [p]
for i = in + 1 to in:

if xi = 0 then v := GL(v)

 // unreachable
if xi = 1 then v := GR(v)

return v return T [x]

In Lhyb-in, we always have p =
x and the body of the for-
loop is always unreachable. In
that case, it is easy to see that
Lhyb-in has identical behavior to
LF

prf-rand
.

The general pattern is that Lhyb-d “chops o�” the top d levels of the conceptual binary
tree. When computing the output for some string x , we don’t start traversing the tree from
the root but rather d levels down the tree, at the node whose position is the d-bit pre�x of
x (called p in the library). We initialize the label of this node as a uniform value (unless it
has already been de�ned), and then continue the traversal to the leaf x .

To �nish the proof, we show that Lhyb-(d − 1) and Lhyb-d are indistinguishable:

T := empty assoc. array

lookup(x):
p := �rst d − 1 bits of x
if T [p] unde�ned:
T [p] ← {0, 1}λ

T [p‖0] := GL(T [p])
T [p‖1] := GR(T [p])

p ′ := �rst d bits of x
v := T [p ′]

for i = d + 1 to in:
if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

The library that is shown here is di�erent from
Lhyb-(d − 1) in the highlighted parts. However, these dif-
ferences have no e�ect on the calling program. The li-
brary here advances d − 1 levels down the tree (to the
node at location p), initializes that node’s label as a uni-
form value, then computes the labels for both its chil-
dren, and �nally continues computing labels toward the
leaf. The only signi�cant di�erence from Lhyb-(d − 1) is
that it computes the labels of both of p’s children, even
though only one is on the path to x . Since it computes
the label correctly, though, it makes no di�erence when
(or if) this extra label is computed.

118

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

T := empty assoc. array

lookup(x):
p := �rst d − 1 bits of x
if T [p] unde�ned:

T [p‖0]

T [p‖1] :=qery()

p ′ := �rst d + 1 bits of x
v := T [p ′]
for i = d + 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

�

LG
prg-real

qery():
s ← {0, 1}λ

return G(s)

We have factored out the body
of the if-statement in terms of
LG

prg-real
since it involves an call

to G on uniform input. Impor-
tantly, the seed toG (calledT [p] in
the previous hybrid) was not used
anywhere else — it was a string of
length d − 1 while the library only
reads T [p ′] for p ′ of length d . The
change has no e�ect on the calling
program.

T := empty assoc. array

lookup(x):
p := �rst d − 1 bits of x
if T [p] unde�ned:
T [p‖0]

T [p‖1] :=qery()
p ′ := �rst d + 1 bits of x
v := T [p ′]
for i = d + 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

�

LG
prg-rand

qery():
r ← {0, 1}2λ

return r

We have applied the security
of G and replaced Lprg-real with
Lprg-rand. The change is indistin-
guishable.

T := empty assoc. array

lookup(x):
p := �rst d − 1 bits of x
if T [p] unde�ned:
T [p‖0] ← {0, 1}λ

T [p‖1] ← {0, 1}λ

p ′ := �rst d + 1 bits of x
v := T [p ′]
for i = d + 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

We have inlined Lprg-rand and split the sampling of 2λ
bits into two separate statements sampling λ bits each.
In this library, we advance d levels down the tree, assign
a uniform label to a node (and its sibling), and then pro-
ceed to the leaf applyingG as usual. The only di�erence
between this library and Lhyb-d is that we sample the la-
bel of a node that is not on our direct path. But since we
sample it uniformly, it doesn’t matter when (or if) that
extra value is sampled. Hence, this library has identical
behavior to Lhyb-d .

We showed that Lhyb-(d − 1) ∼∼∼ Lhyb-d . Putting everything together, we have:

LF
prf-real

≡ Lhyb-0 ∼∼∼ Lhyb-1 ∼∼∼ · · · ∼∼∼ Lhyb-in ≡ L
F
prf-rand

.

119

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Hence, F is a secure PRF. �

6.3 Block Ciphers (Pseudorandom Permutations)

After �xing the seed of a PRF, it computes a function from {0, 1}in to {0, 1}out . Let’s con-
sider the case where in = out . Some functions from {0, 1}in to {0, 1}out are invertible,
which leads to the question of whether a PRF might realize such a function and be invert-
ible (with knowledge of the seed). In other words, what if it were possible to determine x
when given k and F (k,x)? While this would be a convenient property, it is not guaranteed
by the PRF security de�nition, even in the case of in = out . A function from {0, 1}in to
{0, 1}out chosen at random is unlikely to have an inverse, therefore a PRF instantiated with
a random key is unlikely to have an inverse.

A pseudorandom permutation (PRP) — also called a block cipher — is essentially
a PRF that is guaranteed to be invertible for every choice of seed. We use both terms (PRP
and block cipher) interchangeably. The term “permutation” refers to the fact that, for ev-
ery k , the function F (k, ·) should be a permutation of {0, 1}in. Instead of requiring a PRP to
be indistinguishable from a randomly chosen function, we require it to be indistinguish-
able from a randomly chosen invertible function.2 This means we must modify one of the
libraries from the PRF de�nition. Instead of populating the associative array T with uni-
formly random values, it chooses uniformly random but distinct values. As long asT gives
distinct outputs on distinct inputs, it is consistent with some invertible function. The li-
brary guarantees distinctness by only sampling values that it has not previously assigned.
Thinking of an associative array T as a key-value store, we use the notation T .values to
denote the set of values stored in T .

Definition 6.6

(PRP syntax)

Let F : {0, 1}λ × {0, 1}blen → {0, 1}blen be a deterministic function. We refer to blen as the
blocklength of F and any element of {0, 1}blen as a block.

We call F a secure pseudorandom permutation (PRP) (block cipher) if the following
two conditions hold:

1. (Invertible given k) There is a function F−1 : {0, 1}λ ×{0, 1}blen → {0, 1}blen satisfying

F−1(k, F (k,x)) = x ,

for all k ∈ {0, 1}λ and all x ∈ {0, 1}blen.

2. (Security) LF
prp-real

∼∼∼ L
F
prp-rand

, where:

LF
prp-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}blen):
return F (k,x)

LF
prp-rand

T := empty assoc. array

lookup(x ∈ {0, 1}blen):
if T [x] unde�ned:
T [x] ← {0, 1}blen \T .values

return T [x]

2As we will see later, the distinction between randomly chosen function and randomly chosen invertible
function is not as signi�cant as it might seem.

120

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

“T .values” refers to the set {v | ∃x : T [x] = v}.

The changes from the PRF de�nition are highlighted in yellow. In particular, the
Lprp-real and Lprf-real libraries are identical.

Discussion, Pitfalls

In the de�nition, both the functions F and F−1 take the seed k as input. Therefore, only
someone with k can invert the block cipher. Think back to the de�nition of a PRF —
without the seed k , it is hard to compute F (k,x). A block cipher has a forward and reverse
direction, and computing either of them is hard without k!

6.4 Relating PRFs and Block Ciphers

In this section we discuss how to obtain PRFs from PRPs/block ciphers, and vice-versa.

Switching Lemma (PRPs are PRFs, Too!)

Imagine you can query a PRP on chosen inputs (as in the Lprp-real library), and suppose
the blocklength of the PRP is blen = λ. You would only be able to query that PRP on
a negligible fraction of its exponentially large input domain. It seems unlikely that you
would even be able to tell that it was a PRP (i.e., an invertible function) rather than a PRF
(an unrestricted function).

This idea can be formalized as follows.

Lemma 6.7

(PRP switching)

Let Lprf-rand and Lprp-rand be de�ned as in De�nitions 6.1 & 6.6, with parameters in = out =
blen = λ (so that the interfaces match up). Then Lprf-rand

∼∼∼ Lprp-rand.

Proof Recall the replacement-sampling lemma, Lemma 4.11, which showed that the following
libraries are indistinguishable:

Lsamp-L

samp():
r ← {0, 1}λ

return r

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Lsamp-L samples values with replacement, and Lsamp-R samples values without replace-
ment. Now consider the following library L∗:

L∗

T := empty assoc. array

lookup(x ∈ {0, 1}λ):
if T [x] unde�ned:
T [x] ← samp()

return T [x]

121

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

When we link L∗ � Lsamp-L we obtain Lprf-rand since the values in T [x] are sampled uni-
formly. When we link L∗ � Lsamp-R we obtain Lprp-rand since the values in T [x] are sam-
pled uniformly subject to having no repeats (consider R playing the role of T .values in
Lprp-rand). Then from Lemma 4.11, we have:

Lprf-rand ≡ L
∗ � Lsamp-L

∼∼∼ L
∗ � Lsamp-R ≡ Lprp-rand,

which completes the proof. �

Using the switching lemma, we can conclude that every PRP (with blen = λ) is also a PRF:

Corollary 6.8 Let F : {0, 1}λ × {0, 1}λ → {0, 1}λ be a secure PRP (with blen = λ). Then F is also a secure
PRF.

Proof As we have observed above, LF
prf-real

and LF
prp-real

are literally the same library. Since F is
a secure PRP, LF

prp-real

∼∼∼ L
F
prp-rand

. Finally, by the switching lemma, LF
prp-rand

∼∼∼ L
F
prf-rand

.
Putting everything together:

LF
prf-real

≡ LF
prp-real

∼∼∼ L
F
prp-rand

∼∼∼ L
F
prf-rand

,

hence F is a secure PRF. �

Keep in mind that the switching lemma applies only when the blocklength is su�-
ciently large (at least λ bits long). This comes from the fact that Lsamp-L and Lsamp-R in the
proof are indistinguishable only when sampling with long (length-λ) strings (look at the
proof of Lemma 4.11 to recall why). Exercise 6.14 asks you to show that a random permu-
tation over a small domain can be distinguished from a random (unconstrained) function;
so, a PRP with a small blocklength is not a PRF.

Constructing a PRP from a PRF: The Feistel Construction

How can you build an invertible block cipher out of a PRF that is not necessarily invertible?
In this section, we show a simple technique called the Feistel construction (named after
IBM cryptographer Horst Feistel).

The main idea in the Feistel construction is to convert a not-necessarily-invertible
function F : {0, 1}n → {0, 1}n into an invertible function F ∗ : {0, 1}2n → {0, 1}2n . The
function F ∗ is called the Feistel round with round function F and is de�ned as follows:

Construction 6.9

(Feistel round) F ∗(x ‖y):
// each of x ,y are n bits
return y‖(F (y) ⊕ x)

y

x

F⊕
No matter what F is, its Feistel round F ∗ is invertible. Not only that, but its inverse is

a kind of “mirror image” of F ∗:

122

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Feistel inverse Feistel

y

x

F⊕ F⊕
F (y) ⊕ x

y

y

F (y) ⊕
(
F (y) ⊕ x

)
= x

Note how both the forward and inverse Feistel rounds use F in the forward direction!

Example Let’s see what happens in the Feistel construction with a trivial round function. Consider the
constant function F (y) = 0n , which is the “least invertible” function imaginable. The Feistel
construction gives:

F ∗(x ‖y) = y‖(F (y) ⊕ x)

= y‖(0n ⊕ x)

= y‖x

The result is a function that simply switches the order of its halves — clearly invertible.

Example Let’s try another simple round function, this time the identity function F (y) = y. The Feistel
construction gives:

F ∗(x ‖y) = y‖(F (y) ⊕ x)

= y‖(y ⊕ x)

This function is invertible because given y and y ⊕ x we can solve for x as y ⊕ (y ⊕ x). You
can verify that this is what happens when you plug F into the inverse Feistel construction.

We can also consider using a round function F that has a key/seed. The result will be
an F ∗ that also takes a seed. For every seed k , F ∗(k, ·) will have an inverse (which looks
like its mirror image).

Construction 6.10

(Keyed Feistel)

F ∗(k,x ‖y):
return y‖(F (k,y) ⊕ x)

y

x

F (k, ·)⊕
Now suppose F is a secure PRF and we use it as a Feistel round function, to obtain a

keyed function F ∗. Since F ∗(k, ·) is invertible for every k , and since F ∗ uses a secure PRF in
some way, you might be tempted to claim that F ∗ is a secure PRP. Unfortunately, it is not!
The output of F ∗ contains half of its input, making it quite trivial to break the PRP-security
of F ∗.

We can avoid this trivial attack by performing several Feistel rounds in succession,
resulting in a construction called a Feistel cipher. At each round, we can even use a
di�erent key to the round function. If we use k1 in the �rst round, k2 in the second round,
and so on, then k1,k2, . . . is called the key schedule of the Feistel cipher. The formal
de�nition of an r -round Feistel cipher is given below:

123

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Construction 6.11

(Feistel cipher)

Fr
(
(k1, . . . ,kr),v0‖v1

)
:

for i = 1 to r :
vi+1 := F (ki ,vi) ⊕ vi−1

return vr ‖vr+1 v1

v0

F (k1, ·)⊕ F (k2, ·)⊕ F (k3, ·)⊕
· · ·

· · ·
v1 v2 v3

F−1r
(
(k1, . . . ,kr),vr ‖vr+1

)
:

for i = r downto 1:
vi−1 := F (ki ,vi) ⊕ vi+1

return v0‖v1 vr+1

vr

F (kr , ·)⊕ F (kr−1, ·)⊕ F (kr−2, ·)⊕
· · ·

· · ·
vr vr−1 vr−2

Because each round is invertible (given the appropriate round key), the overall Feistel
cipher is also invertible. Note that the inverse of the Feistel cipher uses inverse Feistel
rounds and reverses the order of the key schedule.

Surprisingly, a 3-round Feistel cipher can actually be secure, although a 2-round Feistel
cipher is never secure (see the exercises). More precisely: when F is a secure PRF with
in = out = λ, then using F as the round function of a 3-round Feistel cipher results in a
secure PRP. The Feistel cipher has blocklength 2λ, and it has a key of length 3λ (3 times
longer than the key for F). Implicitly, this means that the three round keys are chosen
independently.

Theorem 6.12

(Luby-Racko�)

If F : {0, 1}λ × {0, 1}λ → {0, 1}λ is a secure PRF, then the 3-round Feistel cipher F3 (Con-
struction 6.11) is a secure PRP.

Unfortunately, the proof of this theorem is beyond the scope of this book.

6.5 PRFs and Block Ciphers in Practice

Block ciphers are one of the cornerstones of cryptography in practice today. We have
shown how (at least in principle) block ciphers can be constructed out of simpler primi-
tives: PRGs and PRFs. However, in practice we use block ciphers that are designed “from
scratch,” and then use these block ciphers to construct simpler PRGs and PRFs when we
need them.

We currently haveno proof that any secure PRP exists. As we discussed in Section 5.2,
such a proof would resolve the famous P vs NP problem. Without such proofs, what is our
basis for con�dence in the security of block ciphers being used today? The process that led
to the Advanced Encryption Standard (AES) block cipher demonstrates the cryptographic
community’s best e�orts at instilling such con�dence.

The National Institute of Standards & Technology (NIST) sponsored a competition to
design a block cipher to replace the DES standard from the 1970s. Many teams of cryp-
tographers submitted their block cipher designs, all of which were then subject to years
of intense public scrutiny by the cryptographic research community. The designs were
evaluated on the basis of their performance and resistance to attacks against the PRP se-
curity de�nition (and other attacks). Some designs did o�er proofs that they resist certain

124

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

classes of attacks, and proofs that justify certain choices in building the block cipher from
simpler components.

The Rijndael cipher, designed by Vincent Rijmen and Joan Daemen, was selected as the
winner and became the AES standard in 2001. There may not be another cryptographic
algorithm that has been the focus of more scrutiny and attempts at attack. So far no
signi�cant weaknesses in AES are known.3

The AES block cipher has a blocklength of 128 bits, and o�ers 3 di�erent variants with
128-bit, 192-bit, and 256-bit keys. As a result of its standardization, AES is available in
cryptographic libraries for any programming language. It is even implemented as hard-
ware instructions in most modern processors, allowing millions of AES evaluations per
second. As we have seen, once you have access to a good block cipher, it can be used
directly also as a secure PRF (Corollary 6.8), and it can be used to construct a simple PRG
(Construction 6.2). Even though AES itself is not a provably secure PRP, these construc-
tions of PRFs and PRGs based on AES are secure. Or, more precisely, the PRF-security and
PRG-security of these constructions is guaranteed to be as good as the PRP-security of
AES.

6.6? Strong Pseudorandom Permutations

Since a block cipher F has a corresponding inverse F−1, it is natural to think of F and F−1

as interchangeable in some sense. However, the PRP security de�nition only guarantees a
security property for F and not its inverse. In the exercises, you will see that it is possible
to construct F which is a secure PRP, whose inverse F−1 is not a secure PRP!

It would be very natural to ask for a PRP whose F and F−1 are both secure. We will later
see applications where this property would be convenient. An even stronger requirement
would allow the distinguisher to query both F and F−1 in a single interaction (rather than
one security de�nition where the distinguisher queries only F , and another de�nition
where the distinguisher queries only F−1). If a PRP is indistinguishable from a random
permutation under that setting, then we say it is a strong PRP (SPRP).

In the formal security de�nition, we provide the calling program two subroutines: one
for forward queries and one for reverse queries. In Lsprp-real, these subroutines are im-
plemented by calling the PRP or its inverse accordingly. In Lsprp-rand, we emulate the
behavior of a randomly chosen permutation that can be queried in both directions. We
maintain two associative arrays T and Tinv to hold the truth tables of these permutations,
and sample their values on-demand. The only restriction is that T and Tinv maintain con-
sistency (T [x] = y if and only if Tinv[y] = x). This also ensures that they always represent
an invertible function. We use the same technique as before to ensure invertibility.

3In all fairness, there is a possibility that government agencies like NSA know of weaknesses in many
cryptographic algorithms, but keep them secret. I know of a rather famous cryptographer (whom I will not
name here) who believes this is likely, based on the fact that NSA has hired more math & cryptography PhDs
than have gone on to do public research.

125

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Definition 6.13

(SPRP security)

Let F : {0, 1}λ × {0, 1}blen → {0, 1}blen be a deterministic function. We say that F is a secure
strong pseudorandom permutation (SPRP) if LF

sprp-real

∼∼∼ L
F
sprp-rand

, where:

LF
sprp-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}blen):
return F (k,x)

invlookup(y ∈ {0, 1}blen):
return F−1(k,y)

LF
sprp-rand

T ,Tinv := empty assoc. arrays

lookup(x ∈ {0, 1}blen):
if T [x] unde�ned:
y ← {0, 1}blen \T .values

T [x] := y; Tinv[y] := x
return T [x]

invlookup(y ∈ {0, 1}blen):
if Tinv[y] unde�ned:
x ← {0, 1}blen \Tinv.values

Tinv[y] := x ; T [x] := y
return Tinv[y]

Earlier we showed that using a PRF as the round function in a 3-round Feistel cipher
results in a secure PRP. However, that PRP is not a strong PRP. Even more surprisingly,
adding an extra round to the Feistel cipher does make it a strong PRP! We present the
following theorem without proof:

Theorem 6.14

(Luby-Racko�)

If F : {0, 1}λ × {0, 1}λ → {0, 1}λ is a secure PRF, then the 4-round Feistel cipher F4 (Con-
struction 6.11) is a secure SPRP.

Exercises

6.1. In this problem, you will show that it is hard to determine the key of a PRF by querying
the PRF.

Let F be a candidate PRF, and suppose there exists a program A such that:

Pr[A � LF
prf-real

outputs k] is non-negligible.

In the above expression, k refers to the private variable within Lprf-real.

Prove that if such anA exists, then F is not a secure PRF. UseA to construct a distinguisher
that violates the PRF security de�nition.

6.2. Let F be a secure PRF.

(a) Letm ∈ {0, 1}out be a �xed (public, hard-coded, known to the adversary) string. De�ne:

Fm(k,x) = F (k,x) ⊕m.

Prove that for everym, Fm is a secure PRF.

126

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

(b) De�ne
F ′(k,x) = F (k,x) ⊕ x .

Prove that F ′ is a secure PRF.

6.3. Let F be a secure PRF with λ-bit outputs, and let G be a PRG with stretch `. De�ne

F ′(k, r) = G(F (k, r)).

So F ′ has outputs of length λ + `. Prove that F ′ is a secure PRF.

6.4. Let F be a secure PRF with in = 2λ, and let G be a length-doubling PRG. De�ne

F ′(k,x) = F (k,G(x)).

We will see that F ′ is not necessarily a PRF.

(a) Prove that if G is injective then F ′ is a secure PRF.
Hint:

YoushouldnotevenneedtousethefactthatGisaPRG.

? (b) Exercise 5.9(b) constructs a secure length-doubling PRG that ignores half of its input.
Show that F ′ is insecure when instantiated with such a PRG. Give a distinguisher and
compute its advantage.
Note: You are not attacking the PRF security of F , nor the PRG security of G. You are
attacking the invalid way in which they have been combined.

6.5. Let F be a secure PRF, and let m ∈ {0, 1}in be a �xed (therefore known to the adversary)
string. De�ne the new function

Fm(k,x) = F (k,x) ⊕ F (k,m).

Show that Fm is not a secure PRF. Describe a distinguisher and compute its advantage.

? 6.6. In the previous problem, what happens when m is secret and part of the PRF seed? Let F
be a secure PRF, and de�ne the new function: De�ne the new function

F ′
(
(k,m),x

)
= F (k,x) ⊕ F (k,m).

The seed of F ′ is (k,m), which you can think of as a λ+ in bit string. Show that F ′ is indeed
a secure PRF.

Hint: RewritetheF
′

algorithmtoincludean“ifx=m”clauseandarguethatthecallingprogramcan
rarelysatisfythisclause.

6.7. Let F be a secure PRF. Let x denote the bitwise complement of the string x . De�ne the
new function:

F ′(k,x) = F (k,x)‖F (k,x).

Show that F ′ is not a secure PRF. Describe a distinguisher and compute its advantage.

6.8. Suppose F is a secure PRF with input length in, but we want to use it to construct a PRF
with longer input length. Below are some approaches that don’t work. For each one,
describe a successful distinguishing attack and compute its advantage:

127

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

(a) F ′(k,x ‖x ′) = F (k,x)‖F (k,x ′), where x and x ′ are each in bits long.

(b) F ′(k,x ‖x ′) = F (k,x) ⊕ F (k,x ′), where x and x ′ are each in bits long.

(c) F ′(k,x ‖x ′) = F (k,x) ⊕ F (k,x ⊕ x ′), where x and x ′ are each in bits long.

(d) F ′(k,x ‖x ′) = F (k, 0‖x) ⊕ F (k, 1‖x ′), where x and x ′ are each in − 1 bits long.

6.9. De�ne a PRF F whose key k we write as (k1, . . . ,kin), where each ki is a string of length
out . Then F is de�ned as:

F (k,x) =
⊕
i :xi=1

ki .

Show that F is not a secure PRF. Describe a distinguisher and compute its advantage.

6.10. De�ne a PRF F whose key k is an in× 2 array of out-bit strings, whose entries we refer to
as k[i,b]. Then F is de�ned as:

F (k,x) =
in⊕
i=1

k[i,xi].

Show that F is not a secure PRF. Describe a distinguisher and compute its advantage.

6.11. A function {0, 1}n → {0, 1}n is chosen uniformly at random. What is the probability that
the function is invertible?

6.12. Let F be a secure PRP with blocklength blen = 128. Then for each k , the function F (k, ·)
is a permutation on {0, 1}128. Suppose I choose a permutation on {0, 1}128 uniformly at
random. What is the probability that the permutation I chose agrees with a permutation
of the form F (k, ·)? Compute the probability as an actual number — is it a reasonable
probability or a tiny one?

6.13. Suppose R : {0, 1}n → {0, 1}n is chosen uniformly among all such functions. What is the
probability that there exists an x ∈ {0, 1}n such that R(x) = x?

Hint: First�ndtheprobabilitythatR(x),xforallx.Simplifyyouranswerusingtheapproximation
(1−y)≈e

−y.

6.14. In this problem, you will show that the PRP switching lemma holds only for large domains.
Let Lprf-rand and Lprp-rand be as in Lemma 6.7. Choose any small value of blen = in =
out that you like, and show that Lprf-rand 6

∼∼∼ Lprp-rand with those parameters. Describe a
distinguisher and compute its advantage.

Hint: Rememberthatthedistinguisherneedstoruninpolynomialtimeinλ,butnotnecessarilypoly-
nomialinblen.

6.15. Let F : {0, 1}in → {0, 1}out be a (not necessarily invertible) function. We showed how to
use F as a round function in the Feistel construction ony when in = out .

Describe a modi�cation of the Feistel construction that works even when the round func-
tion satis�es in , out . The result should be an invertible with input/output length in+out .
Be sure to show that your proposed transform is invertible! You are not being asked to
show any security properties of the Feistel construction.

128

Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

6.16. Show that a 1-round keyed Feistel cipher cannot be a secure PRP, no matter what its round
functions are. That is, construct a distinguisher that successfully distinguishes LF

prp-real

and LF
prp-rand

, knowing only that F is a 1-round Feistel cipher. In particular, the purpose is
to attack the Feistel transform and not its round function, so your attack should work no
matter what the round function is.

6.17. Show that a 2-round keyed Feistel cipher cannot be a secure PRP, no matter what its round
functions are. Your attack should work without knowing the round keys, and it should
work even with di�erent (independent) round keys.

Hint:

Asuccessfulattackrequirestwoqueries.

6.18. Show that any function F that is a 3-round keyed Feistel cipher cannot be a secure strong
PRP. As above, your distinguisher should work without knowing what the round functions
are, and the attack should work with di�erent (independent) round functions.

6.19. In this problem you will show that PRPs are hard to invert without the key (if the block-
length is large enough). Let F be a candidate PRP with blocklength blen > λ. Suppose
there is a program A where:

Pr
y←{0,1}blen

[
A(y) � LF

prf-real
outputs F−1(k,y)

]
is non-negligible.

The notation means that A receives a random block y as an input (and is also linked to
Lprf-real). k refers to the private variable within Lprf-real. So, when given the ability to
evaluate F in the forward direction only (via Lprf-real), A can invert a uniformly chosen
block y.

Prove that if such an A exists, then F is not a secure PRP. Use A to construct a distin-
guisher that violates the PRP security de�nition. Where do you use the fact that blen > λ?
How do you deal with the fact thatA may give the wrong answer with high probability?

6.20. Let F be a secure PRP with blocklength blen = λ, and consider F̂ (k,x) = F (k,k) ⊕ F (k,x).

(a) Show that F̂ is not a strong PRP (even if F is).

? (b) Show that F̂ is a secure (normal) PRP.

129

7 Security Against Chosen Plaintext

A�acks

Our previous security de�nitions for encryption capture the case where a key is used to
encrypt only one plaintext. Clearly it would be more useful to have an encryption scheme
that allows many plaintexts to be encrypted under the same key.

Fortunately we have arranged things so that we get the “correct” security de�nition
when we modify the earlier de�nition in a natural way. We simply let the libraries choose
a secret key once and for all, which is used to encrypt all plaintexts. More formally:

Definition 7.1

(CPA security)

Let Σ be an encryption scheme. We say that Σ has security against chosen-plaintext
a�acks (CPA security) if LΣ

cpa-L

∼∼∼ L
Σ
cpa-R

, where:

LΣ
cpa-L

k ← Σ.KeyGen

eavesdrop(mL,mR ∈ Σ.M):
c := Σ.Enc(k, mL)

return c

LΣ
cpa-R

k ← Σ.KeyGen

eavesdrop(mL,mR ∈ Σ.M):
c := Σ.Enc(k, mR)

return c

Notice how the key k is chosen at initialization time and is static for all calls to Enc.
CPA security is often called “IND-CPA” security, meaning “indistinguishability of cipher-
texts under chosen-plaintext attack.”

7.1 Limits of Deterministic Encryption

We have already seen block ciphers / PRPs, which seem to satisfy everything needed for
a secure encryption scheme. For a block cipher, F corresponds to encryption, F−1 corre-
sponds to decryption, and all outputs of F look pseudorandom. What more could you ask
for in a good encryption scheme?

Example We will see that a block cipher, when used “as-is,” is not a CPA-secure encryption scheme. Let
F denote the block cipher and suppose its block length is blen.

Consider the following adversary A, that tries to distinguish the Lcpa-? libraries:

A

c1 := eavesdrop(0blen, 0blen)

c2 := eavesdrop(0blen, 1blen)

return c1
?
= c2

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

A

c1 := eavesdrop(0blen , 0blen)

c2 := eavesdrop(0blen , 1blen)

return c1
?
= c2

�

LΣ
cpa-L

k ← {0, 1}λ

eavesdrop(mL,mR):
c := F (k, mL)

return c

When A is linked to Lcpa-L, the
eavesdrop algorithm will en-
crypt its �rst argument. So, c1
and c2 will both be computed as
F (k, 0blen). Since F is a determin-
istic function, this results in iden-
tical outputs from eavesdrop. In
other words c1 = c2, and A �
Lcpa-L always outputs 1.

A

c1 := eavesdrop(0blen, 0blen)

c2 := eavesdrop(0blen, 1blen)

return c1
?
= c2

�

LΣ
cpa-R

k ← {0, 1}λ

eavesdrop(mL,mR):
c := F (k, mR)

return c

When A is linked to Lcpa-R, the
eavesdrop algorithm will en-
crypt its second argument. So,
c1 and c2 are computed as c1 =
F (k, 0blen) and c2 = F (k, 1blen).
Since F is a permutation, c1 , c2,
so A �Lcpa-R never outputs 1.

This adversary has advantage 1 in distinguishing the libraries, so the bare block cipher F
is not a CPA-secure encryption scheme.

Impossibility of Deterministic Encryption

The reason a bare block cipher does not provide CPA security is that it is deterministic.
Calling Enc(k,m) twice — with the same key and same plaintext — leads to the same ci-
phertext. Even one-time pad is deterministic.1 One of the �rst and most important aspects
of CPA security is that it is incompatible with deterministic encryption. Deterministic
encryption can never be CPA-secure! In other words, we can attack the CPA-security
of any scheme Σ, knowing only that it has deterministic encryption. The attack is a simple
generalization of our attack against a bare PRP:

A

arbitrarily choose distinct plaintexts x ,y ∈ M
c1 := eavesdrop(x ,x)
c2 := eavesdrop(x ,y)
return c1

?
= c2

A good way to think about what goes wrong with deterministic encryption is that it
leaks whether two ciphertexts encode the same plaintext, and this is not allowed
by CPA security. Think of sealed envelopes as an analogy for encryption. I shouldn’t be
able to tell whether two sealed envelopes contain the same text! We are only now seeing
this issue because this is the �rst time our security de�nition allows an adversary to see
multiple ciphertexts encrypted under the same key.

1Remember, we can always consider what will happen when running one-time pad encryption twice
with the same key + plaintext. The one-time secrecy de�nition doesn’t give us any security guarantees about
using one-time pad in this way, but we can still consider it as a thought experiment.

131

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

Avoiding Deterministic Encryption

Is CPA security even possible? How exactly can we make a non-deterministic encryption
scheme? This sounds challenging! We must design an Enc algorithm such that calling it
twice with the same plaintext and key results in di�erent ciphertexts (otherwise the attack
A above violates CPA security). What’s more, it must be possible to decrypt all of those
di�erent encryptions of the same plaintext to the correct value!

There are 3 general ways to design an encryption scheme that is not deterministic:

I Encryption/decryption can be stateful, meaning that every call to Enc or Dec will
actually modify the value ofk . The symmetric ratchet construction described in Sec-
tion 5.5 could be thought of as such a stateful construction. The key is updated via
the ratchet mechanism for every encryption. A signi�cant drawback with stateful
encryption is that synchronization between sender and receiver is fragile and can
be broken if a ciphertext is lost in transit.

I Encryption can be randomized. Each time a plaintext is encrypted, the Enc algo-
rithm chooses fresh, independent randomness speci�c to that encryption. The main
challenge in designing a randomized encryption method is to incorporate random-
ness into each ciphertext in such a way that decryption is still possible. Although
this sounds quite challenging, we have already seen such a method, and we will
prove its CPA security in the next sections. In this book we will focus almost en-
tirely on randomized encryption.

I Encryption can be nonce-based. A “nonce” stands for “number used only once,”
and it refers to an extra argument that is passed to the Enc and Dec algorithms. A
nonce does not need to be chosen randomly; it does not need to be secret; it only
needs to be distinct among all calls made to Enc. By guaranteeing that some input
to Enc will be di�erent every time (even when the key and plaintext are repeated),
the Enc algorithm can be deterministic and still provide CPA security.
Nonce-based encryption requires a change to the interface of encryption, and
therefore a change to the correctness & security de�nitions as well. The encryp-
tion/decryption algorithms syntax is updated to Enc(k,v,m) and Dec(k,v, c), where
v is a nonce. The correctness property is that Dec(k,v, Enc(k,v,m)) = m for all
k,v,m, so both encryption & decryption algorithms should use the same nonce.
The security de�nition allows the adversary to choose the nonce, but gives an error
if the adversary tries to encrypt multiple ciphertexts with the same nonce. In this
way, the de�nition enforces that the nonces are distinct.

k ← Σ.KeyGen

V := ∅

eavesdrop(v ,mL,mR ∈ Σ.M):

if v ∈ V : return err

V := V ∪ {v}
c := Σ.Enc(k, v ,mL)

return c

∼∼∼

k ← Σ.KeyGen

V := ∅

eavesdrop(v ,mL,mR ∈ Σ.M):

if v ∈ V : return err

V := V ∪ {v}
c := Σ.Enc(k, v ,mR)

return c

132

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

Note that the calling program provides a single value v (not a vL and vR). Both
libraries use the nonce v that is given, and this implies that the encryption scheme
does not need to hide v . If something is the same between both libraries, then it is
not necessary to hide it in order to make the libraries indistinguishable.

If an encryption scheme does not fall into one of these three categories, it cannot
satisfy our de�nition of CPA-security. You can and should use deterministic encryption as
a sanity check against any proposed encryption algorithm.

7.2 Pseudorandom Ciphertexts

When we introduced one-time security of encryption (in Section 2.2), we had two variants
of the de�nition. The more general variant said, roughly, that encryptions of mL should
look like encryptions of mR . The more speci�c variant said that encryptions of every m
should look uniform.

We can do something similar for CPA security, by de�ning a security de�nition that
says “encryptions of m look uniform.” Note that it is not su�cient to use the same se-
curity libraries from the one-time security de�nition. It is important for the library to
allow multiple encryptions under the same key. Just because a single encryption is pseu-
dorandom, it doesn’t mean that multiple encryptions appear jointly pseudorandom. In
particular, they may not look independent (this was an issue we saw when discussing the
di�culty of constructing a PRF from a PRG).

Definition 7.2

(CPA$ security)

Let Σ be an encryption scheme. We say that Σ has pseudorandom ciphertexts in the
presence of chosen-plaintext a�acks (CPA$ security) if LΣ

cpa$-real

∼∼∼ L
Σ
cpa$-rand

, where:

LΣ
cpa$-real

k ← Σ.KeyGen

ctxt(m ∈ Σ.M):
c := Σ.Enc(k,m)
return c

LΣ
cpa$-rand

ctxt(m ∈ Σ.M):
c ← Σ.C
return c

This de�nition is also called “IND$-CPA”, meaning “indistinguishable from random
under chosen plaintext attacks.” This de�nition will be useful to use since:

I It is easier to prove CPA$ security than to prove CPA security. Proofs for CPA secu-
rity tend to be about twice as long and twice as repetitive, since they involve getting
to a “half-way hybrid” and then performing the same sequence of hybrids steps in
reverse. Taking the proof only to the same half-way point is generally enough to
prove CPA$ security

I CPA$ security implies CPA security. We show this below, but the main idea is the
same as in the case of one-time security. If encryptions of all plaintexts look uniform,
then encryptions ofmL look like encryptions ofmR .

I Most of the schemes we will consider achieve CPA$ anyway.

133

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

Still, most of our high-level discussion of security properties will be based on CPA security.
It is the “minimal” (i.e., least restrictive) de�nition that appears to capture our security
intuitions.

Claim 7.3 If an encryption scheme has CPA$ security, then it also has CPA security.

Proof We want to prove that LΣ
cpa-L

∼∼∼ L
Σ
cpa-R

, using the assumption that LΣ
cpa$-real

∼∼∼ L
Σ
cpa$-rand

.
The sequence of hybrids follows:

LΣ
cpa-L

:

LΣ
cpa-L

k ← Σ.KeyGen

eavesdrop(mL,mR):
c := Σ.Enc(k,mL)

return c

The starting point is LΣ
cpa-L

, as expected.

eavesdrop(mL,mR):
c := ctxt(mL)

return c

�

LΣ
cpa$-real

k ← Σ.KeyGen

ctxt(m):
c := Σ.Enc(k,m)
return c

It may look strange, but we have further
factored out the call to Enc into a subrou-
tine. It looks like everything from Lcpa-L

has been factored out, but actually the
original library still “makes the choice” of
which ofmL,mR to encrypt.

eavesdrop(mL,mR):
c := ctxt(mL)

return c

�

LΣ
cpa$-rand

ctxt(m):
c ← Σ.C
return c

We have replaced LΣ
cpa$-real

with
LΣ

cpa$-rand
. By our assumption, the

change is indistinguishable.

eavesdrop(mL,mR):
c := ctxt(mR)

return c

�

LΣ
cpa$-rand

ctxt(m):
c ← Σ.C
return c

We have changed the argument being
passed to ctxt. This has no e�ect on the
library’s behavior since ctxt completely
ignores its argument in these hybrids.

eavesdrop(mL,mR):
c := ctxt(mR)

return c

�

LΣ
cpa$-real

k ← Σ.KeyGen

ctxt(m):
c := Σ.Enc(k,m)
return c

The mirror image of a previous step; we
replace Lcpa$-rand with Lcpa$-real.

134

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

LΣ
cpa-R

:

LΣ
cpa-R

k ← Σ.KeyGen

eavesdrop(mL,mR):
c := Σ.Enc(k,mR)

return c

The Lcpa$-real library has been inlined,
and the result is LΣ

cpa-R
.

The sequence of hybrids shows that LΣ
cpa-L

∼∼∼ L
Σ
cpa-R

, as desired. �

7.3 CPA-Secure Encryption Based On PRFs

CPA security presents a signi�cant challenge; its goals seem di�cult to reconcile. On the
one hand, we need an encryption method that is randomized, so that each plaintext m
is mapped to a large number of potential ciphertexts. On the other hand, the decryption
method must be able to recognize all of these various ciphertexts as being encryptions of
m.

However, we have already seen a way to do this! In Chapter 6 we motivated the
concept of a PRF with the following encryption technique. If Alice and Bob share a huge
tableT initialized with uniform data, then Alice can encrypt a plaintextm to Bob by saying
something like “this is encrypted with one-time pad, using key #674696273” and sending
T [674696273]⊕m. Seeing the number 674696273 doesn’t help the eavesdropper know what
T [674696273] is. A PRF allows Alice & Bob to do the same encryption while sharing only
a short key k . Instead of a the huge table T , they can instead use a PRF F (k, ·) to derive
a common pseudorandom value. Knowing a value r doesn’t help the adversary predict
F (k, r), when k is secret.

So, translated into more precise PRF notation, an encryption of m will look like
(r , F (k, r) ⊕m). Since Bob also has k , he can decrypt any ciphertext of this form by com-
puting F (k, r) and xor’ing the second ciphertext component to recoverm.

It remains to decide how exactly Alice will choose r values. We argued, informally, that
as long as these r values don’t repeat, security is preserved. This is indeed true, and the
distinctness of the r values is critical. Recall that there are 3 ways to avoid deterministic
encryption, and all 3 of them would work here:

I In a stateful encryption, r could be used as a counter. Use r = i to encrypt/decrypt
the ith ciphertext.

I In a randomized encryption, choose r uniformly at random for each encryption. If
the r values are long enough strings, then repeating an r value should be negligibly
likely.

I In a nonce-based encryption, we can simply let r be the nonce. In the nonce-based
setting, it is guaranteed that these values won’t repeat.

In this section we will show the security proof for the case of randomized encryption,
since it is the most traditional setting and also somewhat more robust than the others.

135

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

The exercises explore how the nonce-based approach is more fragile when this scheme is
extended in natural ways.

Construction 7.4 Let F be a secure PRF with in = λ. De�ne the following encryption scheme based on F :

K = {0, 1}λ

M = {0, 1}out

C = {0, 1}λ × {0, 1}out

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m):
r ← {0, 1}λ

x := F (k, r) ⊕m
return (r ,x)

Dec(k, (r ,x)):
m := F (k, r) ⊕ x
returnm

It is easy to check that the scheme satis�es the correctness property.

Claim 7.5 Construction 7.4 has CPA$ security (and therefore CPA security) if F is a secure PRF.

The proof has more steps than other proofs we have seen before, and some steps are
subtle. So let us use a Socratic dialogue to illustrate the strategy behind the proof:

Salviati: The ciphertexts of Construction 7.4 are indistinguishable from uniform random-
ness.

Simplicio: Salviati, you speak with such con�dence! Do tell me why you say that these
ciphertexts appear pseudorandom.

Salviati: Simple! The ciphertexts have the form (r , F (k, r) ⊕m). By its very de�nition, r
is chosen uniformly, while F (k, r) ⊕m is like a one-time pad ciphertext which is
also uniformly distributed.

Simplicio: Your statement about r is self-evident but F (k, r) ⊕m confuses me. This does
not look like the one-time pad that we have discussed. For one thing, the same
k is used “every time,” not “one-time.”

Salviati: I did say it was merely “like” one-time pad. The one-time pad “key” is not k
but F (k, r). And since F is a pseudorandom function, all its outputs will appear
independently uniform (not to mention uncorrelated with their respective r), even
when the same seed is used every time. Is this not what we require from a one-time
pad key?

Simplicio: I see, but surely the outputs of F appear independent only when its inputs are
distinct? I know that F is deterministic, and this may lead to the same “one-
time pad key” being used on di�erent occasions.

Salviati: Your skepticism serves you well in this endeavor, Simplicio. Indeed, the heart of
your concern is that Alice may choose r such that it repeats. I say that this is
negligibly likely, so that we can safely ignore such a bothersome event.

Simplicio: Bothersome indeed, but why do you say that r is unlikely to repeat?

136

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

Salviati: Oh Simplicio, now you are becoming bothersome! This value r is λ bits long and
chosen uniformly at random each time. Do you not recall our agonizingly long
discussion about the birthday paradox?

Simplicio: Oh yes, now I remember it well. Now I believe I understand all of your reason-
ing: Across all ciphertexts that are generated, r is unlikely to repeat because
of the birthday paradox. Now, provided that r never repeats, Alice invokes the
PRF on distinct inputs. A PRF invoked on distinct inputs provides outputs that
are uniformly random for all intents and purposes. Hence, using these outputs
as one-time pads completely hides the plaintext. Is that right, Salviati?

Salviati: Excellent! Now we may return to discussing the motion of the Sun and Earth . . .

Look for Simplicio’s �nal summary to be re�ected in the sequence of hybrids used in
the formal proof:

Proof We prove that LΣ
cpa$-real

∼∼∼ L
Σ
cpa$-rand

using the hybrid technique:

LΣ
cpa$-real

:

LΣ
cpa$-real

k ← {0, 1}λ

ctxt(m):
r ← {0, 1}λ

x := F (k, r) ⊕m

return (r ,x)

The starting point is LΣ
cpa$-real

. The details
of Σ have been �lled in and highlighted.

ctxt(m):
r ← {0, 1}λ

z := lookup(r)
x := z ⊕m
return (r ,x)

�

LF
prf-real

k ← {0, 1}λ

lookup(r):
return F (k, r)

The statements pertaining to the PRF have
been factored out in terms of the LF

prf-real

library.

ctxt(m):
r ← {0, 1}λ

z := lookup(r)
x := z ⊕m
return (r ,x)

�

LF
prf-rand

T := empty

lookup(r):
if T [r] unde�ned:
T [r] ← {0, 1}out

return T [r]

We have replaced LF
prf-real

with LF
prf-rand

.
From the PRF security of F , these two hy-
brids are indistinguishable.

At this point in the proof, it is easy to imagine that we are done. Ciphertexts have the
form (r ,x), where r is chosen uniformly and x is the result of encrypting the plaintext with
what appears to be a one-time pad. Looking more carefully, however, the “one-time pad

137

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

key” is T [r] — a value that could potentially be used more than once if r is ever repeated!
As Simplicio rightly pointed out, a PRF gives independently random(-looking) outputs

when called on distinct inputs. But in our current hybrid there is no guarantee that PRF
inputs are distinct! Our proof must explicitly contain reasoning about why PRF inputs are
unlikely to be repeated. We do so by appealing to the sampling-with-replacement lemma
of Lemma 4.11.

We �rst factor out the sampling of r values into a subroutine. The subroutine corre-
sponds to the Lsamp-L library of Lemma 4.11:

ctxt(m):
r ← samp()
z := lookup(r)
x := z ⊕m
return (r ,x)

�

LF
prf-rand

T := empty

lookup(r):
if T [r] unde�ned:
T [r] ← {0, 1}out

return T [r]

�

Lsamp-L

samp():
r ← {0, 1}λ

return r

Next, Lsamp-L is replaced by Lsamp-R. By Lemma 4.11, the di�erence is indistinguishable:

ctxt(m):
r ← samp()
z := lookup(r)
x := z ⊕m
return (r ,x)

�

LF
prf-rand

T := empty

lookup(r):
if T [r] unde�ned:
T [r] ← {0, 1}out

return T [r]

�

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Inspecting the previous hybrid, we can reason that the arguments to lookup are guaran-
teed to never repeat. Therefore the Lprf-rand library can be greatly simpli�ed. In particular,
the if-condition inLprf-rand is always true. Simplifying has no e�ect on the library’s output
behavior:

ctxt(m):
r ← samp()
z := lookup(r)
x := z ⊕m
return (r ,x)

�

lookup(r):
t ← {0, 1}out

return t

�

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Now we are indeed using unique one-time pads to mask the plaintext. We are in much
better shape than before. Recall that our goal is to arrive at a hybrid in which the outputs
of ctxt are chosen uniformly. These outputs include the value r , but now r is no longer
being chosen uniformly! We must revert r back to being sampled uniformly, and then we
are nearly to the �nish line.

138

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

ctxt(m):
r ← samp()
z := lookup(r)
x := z ⊕m
return (r ,x)

�

lookup(r):
t ← {0, 1}out

return t

�

Lsamp-L

samp():
r ← {0, 1}λ

return r

As promised, Lsamp-R has been
replaced by Lsamp-L. The
di�erence is indistinguishable
due to Lemma 4.11.

ctxt(m):
r ← {0, 1}λ

z ← {0, 1}out

x := z ⊕m
return (r ,x)

All of the subroutine calls have
been inlined; no e�ect on the
library’s output behavior.

LΣ
cpa$-rand

:

LΣ
cpa$-rand

ctxt(m):
r ← {0, 1}λ

x ← {0, 1}out

return (r ,x)

We have applied the one-time pad rule with respect to variables z
and x , but omitted the very familiar steps (factor out, replace library,
inline) that we have seen several times before. The resulting library is
precisely LΣ

cpa$-rand
since it samples uniformly from Σ.C = {0, 1}λ ×

{0, 1}out .

The sequence of hybrids shows that LΣ
cpa$-real

∼∼∼ L
Σ
cpa$-rand

, so Σ has pseudorandom
ciphertexts. �

Exercises

7.1. Let Σ be an encryption scheme, and suppose there is a program A that recovers the key
from a chosen plaintext attack. More precisely, Pr[A � L outputs k] is non-negligible,
where L is de�ned as:

L

k ← Σ.KeyGen

challenge(m ∈ Σ.M):
c := Σ.Enc(k,m)
return c

Prove that if such anA exists, then Σ does not have CPA security. UseA as a subroutine
in a distinguisher that violates the CPA security de�nition.

In other words, CPA security implies that it should be hard to determine the key from
seeing encryptions of chosen plaintexts.

7.2. Let Σ be an encryption scheme with CPA$ security. Let Σ′ be the encryption scheme
de�ned by:

Σ′.Enc(k,m) = 00‖Σ.Enc(k,m)

139

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

The decryption algorithm in Σ′ simply throws away the �rst two bits of the ciphertext and
then calls Σ.Dec.

(a) Does Σ′ have CPA$ security? Prove or disprove (if disproving, show a distinguisher
and calculate its advantage).

(b) Does Σ′ have CPA security? Prove or disprove (if disproving, show a distinguisher and
calculate its advantage).

7.3. Suppose a user is using Construction 7.4 and an adversary observes two ciphertexts that
have the same r value.

(a) What exactly does the adversary learn about the plaintexts in this case?

(b) How do you reconcile this with the fact that in the proof of Claim 7.5 there is a hybrid
where r values are never repeated?

7.4. Construction 7.4 is a randomized encryption scheme, but we could also consider de�ning
it as a nonce-based scheme, interpreting r as the nonce: Enc(k, r ,m) = (r , F (k, r) ⊕m).
Formally prove that it is secure as a deterministic, nonce-based scheme. In other words,
show that the following two libraries are indistinguishable, where Σ refers to Construc-
tion 7.4.

k ← Σ.KeyGen

V := ∅

eavesdrop(v,mL,mR ∈ Σ.M):
if v ∈ V : return err

V := V ∪ {v}
c := Σ.Enc(k,v,mL)

return c

k ← Σ.KeyGen

V := ∅

eavesdrop(v,mL,mR ∈ Σ.M):
if v ∈ V : return err

V := V ∪ {v}
c := Σ.Enc(k,v,mR)

return c

7.5. Let F be a secure PRP with blocklength blen = λ. Consider the following randomized
encryption scheme:

K = {0, 1}λ

M = {0, 1}λ

C = ({0, 1}λ)2

KeyGen :
k ← {0, 1}λ

return k

Enc(k,m) :
v ← {0, 1}λ

x := F (k,v ⊕m)
return (v,x)

(a) Give the decryption algorithm for this scheme.

(b) Prove that the scheme has CPA$ security.

(c) Suppose that we interpret this scheme as a nonce-based scheme, wherev is the nonce.
Show that the scheme does not have nonce-based CPA security. The libraries for this
de�nition are given in the previous problem.
Note: Even in the standard CPA libraries, v is given to the adversary and it is unlikely
to repeat. However, in the nonce-based libraries the adversary can choose v , and this
is what leads to problems.

140

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

7.6. Let F be a secure PRP with blocklength blen = λ. Show the the following scheme has
pseudorandom ciphertexts:

K = {0, 1}λ

M = {0, 1}λ

C = ({0, 1}λ)2

KeyGen :
k ← {0, 1}λ

return k

Enc(k,m) :
s ← {0, 1}λ

z := F (k, s ⊕m) ⊕m
return (s ⊕m, z)

Dec(k, (r , z)) :
return F (k, r) ⊕ z

Hint: RewriteEnctoincludeanewvariabler:=s⊕mandwritetheoutputintermsofrinsteadofs.
Youmightthenrecognizeafamiliarface.

7.7. Let F be a secure PRP with blocklength blen = λ. Below are several encryption schemes,
each with K =M = {0, 1}λ and C = ({0, 1}λ)2. For each one:

I Give the corresponding Dec algorithm.

I State whether the scheme has CPA security. (Assume KeyGen samples the key uni-
formly from {0, 1}λ .) If so, then give a security proof. If not, then describe a success-
ful adversary and compute its distinguishing bias.

(a)

Enc(k,m) :
r ← {0, 1}λ

z := F (k,m) ⊕ r
return (r , z)

(b)

Enc(k,m) :
r ← {0, 1}λ

s := r ⊕m
x := F (k, r)
return (s,x)

(c)

Enc(k,m) :
r ← {0, 1}λ

x := F (k, r)
y := r ⊕m
return (x ,y)

(d)

Enc(k,m) :
r ← {0, 1}λ

x := F (k, r)
y := F (k, r) ⊕m
return (x ,y)

(e)

Enc(k,m) :
r ← {0, 1}λ

x := F (k, r)
y := r ⊕ F (k,m)
return (x ,y)

(f)

Enc(k,m) :
s1 ← {0, 1}

λ

s2 := s1 ⊕m
x := F (k, s1)
y := F (k, s2)
return (x ,y)

? (g)

Enc(k,m) :
r ← {0, 1}λ

x := F (k,m ⊕ r) ⊕ r
return (r ,x)

Hint: Inallsecurityproofs,youcanusethePRPswitchinglemma(Lemma6.7)tostartwiththeassump-
tionthatFisaPRF.

141

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

7.8. Suppose F is a secure PRP with blocklength n + λ. Below is the encryption algorithm for
a scheme that supports plaintext spaceM = {0, 1}n :

Enc(k,m):
r ← {0, 1}λ

return F (k,m‖r)

(a) Describe the corresponding decryption algorithm.

(b) Prove that the scheme satis�es CPA$ security.

? 7.9. Suppose F is a secure PRP with blocklength λ. Give the decryption algorithm for the
following scheme and prove that it does not have CPA security:

K = {0, 1}λ

M = {0, 1}2λ

C = ({0, 1}λ)3

KeyGen :
k ← {0, 1}λ

return k

Enc(k,m1‖m2) :
r ← {0, 1}λ

s := F (k, r ⊕m1)

t := F
(
k, r ⊕m1 ⊕ F (k,m1) ⊕m2

)
return (r , s, t)

? 7.10. Suppose F is a secure PRP with blocklength λ. Give the decryption algorithm for the
following scheme and prove that it satis�es CPA$ security:

K = ({0, 1}λ)2

M = {0, 1}λ

C = ({0, 1}λ)2

KeyGen :
k ← {0, 1}λ

r ← {0, 1}λ

return (k, r)

Enc((k, r),m) :
s ← {0, 1}λ

x := F (k, s)
y := F (k, s ⊕m ⊕ r)
return (x ,y)

Hint: Youmay�nditusefultodividetheEncalgorithmintotwocasesbyintroducingan“ifm=r”
statement.

Note: If r = 0λ then the scheme reduces to Exercise 7.7 (f). So it is important that r is secret
and random.

7.11. Let Σ be an encryption scheme with plaintext space M = {0, 1}n and ciphertext space
C = {0, 1}n . Prove that Σ cannot have CPA security.

Conclude that direct application of a PRP to the plaintext is not a good choice for an
encryption scheme.

? 7.12. In all of the CPA-secure encryption schemes that we’ll ever see, ciphertexts are at least
λ bits longer than plaintexts. This problem shows that such ciphertext expansion is
essentially unavoidable for CPA security.

Let Σ be an encryption scheme with plaintext space M = {0, 1}n and ciphertext space
C = {0, 1}n+` . Show that there exists a distinguisher that distinguishes the two CPA
libraries with advantage Ω(1/2`).

Hint:

Asawarmup,considerthecasewhereeachplaintexthasexactly2
`

possibleciphertexts.However,
thisneednotbetrueingeneral.Forthegeneralcase,choosearandomplaintextmandarguethat
with“goodprobability”(thatyoushouldpreciselyquantify)mhasatmost2

`+1possibleciphertexts.

142

Draft: January 3, 2021 CHAPTER 7. SECURITY AGAINST CHOSEN PLAINTEXT ATTACKS

7.13. Show that an encryption scheme Σ has CPA security if and only if the following two
libraries are indistinguishable:

LΣ
le�

k ← Σ.KeyGen

challenge(m ∈ Σ.M):
return Σ.Enc(k,m)

LΣ
right

k ← Σ.KeyGen

challenge(m ∈ Σ.M):
m′← Σ.M
return Σ.Enc(k,m′)

In plain language: if these libraries are indistinguishable, then encryptions of chosen plain-
texts are indistinguishable from encryptions of random plaintexts. You must prove both
directions!

7.14. Let Σ1 and Σ2 be encryption schemes with Σ1.M = Σ2.M = {0, 1}
n .

Consider the following approach for encrypting plaintext m ∈ {0, 1}n : First, secret-share
m using any 2-out-of-2 secret-sharing scheme. Then encrypt one share under Σ1 and the
other share under Σ2. Release both ciphertexts.

(a) Formally describe the algorithms of this encryption method.

(b) Prove that the scheme has CPA security if at least one of {Σ1, Σ2} has CPA security.
In other words, it is not necessary that both Σ1 and Σ2 are secure. This involves proving
two cases (assuming Σ1 is secure, and assuming Σ2 is secure).

143

8 Block Cipher Modes of Operation

One of the drawbacks of the previous CPA-secure encryption scheme is that its ciphertexts
are λ bits longer than its plaintexts. In the common case that we are using a block cipher
with blocklength blen = λ, this means that ciphertexts are twice as long as plaintexts. Is
there any way to encrypt data (especially lots of it) without requiring such a signi�cant
overhead?

A block cipher mode refers to a way to use a block cipher to e�ciently encrypt a
large amount of data (more than a single block). In this chapter, we will see the most
common modes for CPA-secure encryption of long plaintexts.

8.1 A Tour of Common Modes

As usual, blen will denote the blocklength of a block cipher F . In our diagrams, we’ll write
Fk as shorthand for F (k, ·). When m is the plaintext, we will write m = m1‖m2‖ · · · ‖m` ,
where eachmi is a single block (so ` is the length of the plaintext measured in blocks). For
now, we will assume thatm is an exact multiple of the block length.

ECB: Electronic Codebook (never never use this! never‼)

The most obvious way to use a block cipher to encrypt a long message is to just apply the
block cipher independently to each block. The only reason to know about this mode is to
know never to use it (and to publicly shame anyone who does). It can’t be said enough
times: never use ECB mode! It does not provide security of encryption; can you see
why?

Construction 8.1

(ECB Mode)

N
EVER

U
SE

TH
IS

!

Enc(k,m1‖ · · · ‖m`):
for i = 1 to `:
ci := F (k,mi)

return c1‖ · · · ‖c`

Dec(k, c1‖ · · · ‖c`):
for i = 1 to `:
mi := F−1(k, ci)

returnm1‖ · · · ‖m`

Fk Fk Fk

m1 m2 m3

c1 c2 c3

· · ·

· · ·

· · ·



F−1k F−1k F−1k

c1 c2 c3

m1 m2 m3

· · ·

· · ·

· · ·



© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

CBC: Cipher Block Chaining

CBC (which stands for cipher block chaining) is the most common mode in practice. The
CBC encryption of an `-block plaintext is ` + 1 blocks long. The �rst ciphertext block is
called an initialization vector (IV). Here we have described CBC mode as a randomized
encryption, with the IV of each ciphertext being chosen uniformly. As you know, random-
ization is necessary (but not su�cient) for achieving CPA security, and indeed CBC mode
provides CPA security.

Construction 8.2

(CBC Mode)

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

blen:
for i = 1 to `:
ci := F (k,mi ⊕ ci−1)

return c0‖c1‖ · · · ‖c`

Dec(k, c0‖ · · · ‖c`):
for i = 1 to `:
mi := F−1(k, ci) ⊕ ci−1

returnm1‖ · · · ‖m`

Fk Fk

$

⊕ ⊕

m1 m2

c0 c1 c2

· · ·

· · ·

· · ·



F−1k F−1k

⊕ ⊕

c0 c1 c2

m1 m2

· · ·

· · ·

· · ·


CTR: Counter

The next most common mode in practice is counter mode (usually abbreviated as CTR
mode). Just like CBC mode, it involves an additional IV block r that is chosen uniformly.
The idea is to then use the sequence

F (k, r); F (k, r + 1); F (k, r + 2); · · ·

as a long one-time pad to mask the plaintext. Since r is a block of bits, the addition ex-
pressions like r + 1 refer to addition modulo 2blen (this is the typical behavior of unsigned
addition in a processor).

145

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Construction 8.3

(CTR Mode)
Enc(k,m1‖ · · · ‖m`):
r ← {0, 1}blen

c0 := r
for i = 1 to `:
ci := F (k, r) ⊕mi
r := r + 1 % 2blen

return c0‖ · · · ‖c`

Fk Fk Fk

$

⊕ ⊕ ⊕

m1 m2 m3

c0 c1 c2 c3

+1 +1 +1

· · ·

· · ·

· · ·

OFB: Output Feedback

OFB (output feedback) mode is rarely used in practice. We’ll include it in our discussion
because it has the easiest security proof. As with CBC and CTR modes, OFB starts with a
random IV r , and then uses the sequence:

F (k, r); F (k, F (k, r)); F (k, F (k, F (k, r))); · · ·

as a one-time pad to mask the plaintext.

Construction 8.4

(OFB Mode)
Enc(k,m1‖ · · · ‖m`):
r ← {0, 1}blen

c0 := r
for i = 1 to `:
r := F (k, r)
ci := r ⊕mi

return c0‖ · · · ‖c`

Fk Fk Fk

$

⊕ ⊕ ⊕

m1 m2 m3

c0 c1 c2 c3

· · ·

· · ·

· · ·

Compare & Contrast

CBC and CTR modes are essentially the only two modes that are ever considered in prac-
tice for CPA security. Both provide the same security guarantees, and so any comparison
between the two must be based on factors outside of the CPA security de�nition. Here are
a few properties that are often considered when choosing between these modes:

I Although we have not shown the decryption algorithm for CTR mode, it does not
even use the block cipher’s inverse F−1. This is similar to our PRF-based encryption
scheme from the previous chapter (in fact, CTR mode collapses to that construction
when restricted to 1-block plaintexts). Strictly speaking, this means CTR mode can
be instantiated from a PRF; it doesn’t need a PRP. However, in practice it is rare to
encounter an e�cient PRF that is not a PRP.

I CTR mode encryption can be parallelized. Once the IV has been chosen, the ith
block of ciphertext can be computed without �rst computing the previous i − 1

146

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

blocks. CBC mode does not have this property, as it is inherently sequential. Both
modes have a parallelizable decryption algorithm, though.

I If calls to the block cipher are expensive, it might be desirable to pre-compute and
store them before the plaintext is known. CTR mode allows this, since only the IV
a�ects the input given to the block cipher. In CBC mode, the plaintext in�uences the
inputs to the block cipher, so these calls cannot be pre-computed before the plaintext
is known.

I It is relatively easy to modify CTR to support plaintexts that are not an exact multiple
of the blocklength. (This is left as an exercise.) We will see a way to make CBC mode
support such plaintexts as well, but it is far from trivial.

I So far all of the comparisons have favored CTR mode, so here is one important
property that favors CBC mode. It is common for implementers to misunderstand
the security implications of the IV in these modes. Many careless implementations
allow an IV to be reused. Technically speaking, reusing an IV (other than by acci-
dent, as the birthday bound allows) means that the scheme was not implemented
correctly. But rather than dumping the blame on the developer, it is good design
practice to anticipate likely misuses of a system and, when possible, try to make
them non-catastrophic.

The e�ects of IV-reuse in CTR mode are quite devastating to message privacy (see
the exercises). In CBC mode, reusing an IV can actually be safe, if the two plaintexts
have di�erent �rst blocks!

8.2 CPA Security and Variable-Length Plaintexts

Here’s a big surprise: none of these block cipher modes achieve CPA security, or at least
CPA security as we have been de�ning it.

Example Consider a block cipher with blen = λ, used in CBC mode. As you will see, there is nothing
particularly speci�c to CBC mode, and the same observations apply to the other modes.

In CBC mode, a plaintext consisting of ` blocks is encrypted into a ciphertext of ` + 1
blocks. In other words, the ciphertext leaks the number of blocks in the plaintext. We
can leverage this observation into the following attack:

A:

c := eavesdrop(0λ , 02λ)
return |c | ?= 2λ

The distinguisher chooses a 1-block plaintext and a 2-block plaintext. If this distinguisher is
linked to Lcpa-L, the 1-block plaintext is encrypted and the resulting ciphertext is 2 blocks (2λ
bits) long. If the distinguisher is linked to Lcpa-R, the 2-block plaintext is encrypted and the
resulting ciphertext is 3 blocks (3λ bits) long. By simply checking the length of the ciphertext,
this distinguisher can tell the di�erence and achieve advantage 1.

147

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

So, technically speaking, these block cipher modes do not provide CPA security, since
ciphertexts leak the length (measured in blocks) of the plaintext. But suppose we don’t re-
ally care about hiding the length of plaintexts.1 Is there a way to make a security de�nition
that says: ciphertexts hide everything about the plaintext, except their length?

It is clear from the previous example that a distinguisher can successfully distinguish
the CPA libraries if it makes a query eavesdrop(mL,mR) with |mL | , |mR |. A simple
way to change the CPA security de�nition is to just disallow this kind of query. The
libraries will give an error message if |mL | , |mR |. This would allow the adversary to
make the challenge plaintexts di�er in any way of his/her choice, except in their length. It
doesn’t really matter whether |m | refers to the length of the plaintext in bits or in blocks
— whichever makes the most sense for a particular scheme.

From now on, when discussing encryption schemes that support variable-length plain-
texts, CPA security will refer to the following updated libraries:

LΣ
cpa-L

k ← Σ.KeyGen

ctxt(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mL)

return c

LΣ
cpa-R

k ← Σ.KeyGen

ctxt(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mR)

return c

In the de�nition of CPA$ security (pseudorandom ciphertexts), the Lcpa$-rand library re-
sponds to queries with uniform responses. Since these responses must look like cipher-
texts, they must have the appropriate length. For example, for the modes discussed in this
chapter, an `-block plaintext is expected to be encrypted to an (`+1)-block ciphertext. So,
based on the length of the plaintext that is provided, the library must choose the appropri-
ate ciphertext length. We are already using Σ.C to denote the set of possible ciphertexts of
an encryption scheme Σ. So let’s extend the notation slightly and write Σ.C(`) to denote
the set of possible ciphertexts for plaintexts of length `. Then when discussing encryption
schemes supporting variable-length plaintexts, CPA$ security will refer to the following
libraries:

LΣ
cpa$-real

k ← Σ.KeyGen

challenge(m ∈ Σ.M):
c := Σ.Enc(k,m)
return c

LΣ
cpa$-rand

challenge(m ∈ Σ.M):
c ← Σ.C(|m |)

return c

Note that the Lcpa$-rand library does not use any information about m other than its
length. This again re�ects the idea that ciphertexts leak nothing about plaintexts other
than their length.

1Indeed, hiding the length of communication (in the extreme, hiding the existence of communication) is
a very hard problem.

148

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

In the exercises, you are asked to prove that, with respect to these updated security
de�nitions, CPA$ security implies CPA security as before.

Don’t Take Length-Leaking for Granted!

We have just gone from requiring encryption to leak no partial information to casually
allowing some speci�c information to leak. Let us not be too hasty about this!

If we want to truly support plaintexts of arbitrary length, then leaking the length is in
fact unavoidable. But “unavoidable” doesn’t mean “free of consequences.” By observing
only the length of encrypted network tra�c, many serious attacks are possible. Here are
several examples:

I When accessing Google maps, your browser receives many image tiles that comprise
the map that you see. Each image tile has the same pixel dimensions. However, they
are compressed to save resources, and not all images compress as signi�cantly as
others. Every region of the world has its own rather unique “�ngerprint” of image-
tile lengths. So even though tra�c to and from Google maps is encrypted, the sizes of
the image tiles are leaked. This can indeed be used to determine the region for which
a user is requesting a map.2 The same idea applies to auto-complete suggestions in
a search form.

I Variable-bit-rate (VBR) encoding is a common technique in audio/video encoding.
When the data stream is carrying less information (e.g., a scene with a �xed camera
position, or a quiet section of audio), it is encoded at a lower bit rate, meaning that
each unit of time is encoded in fewer bits. In an encrypted video stream, the changes
in bit rate are re�ected as changes in packet length. When a user is watching a movie
on Net�ix or a Youtube video (as opposed to a live event stream), the bit-rate changes
are consistent and predictable. It is therefore rather straight-forward to determine
which video is being watched, even on an encrypted connection, just by observing
the packet lengths.

I VBR is also used in many encrypted voice chat programs. Attacks on these tools
have been increasing in sophistication. The �rst attacks on encrypted voice pro-
grams showed how to identify who was speaking (from a set of candidates), just by
observing the stream of ciphertext sizes. Later attacks could determine the language
being spoken. Eventually, when combined with sophisticated linguistic models, it
was shown possible to even identify individual words to some extent!

It’s worth emphasizing again that none of these attacks involve any attempt to break the
encryption. The attacks rely solely on the fact that encryption leaks the length of the
plaintexts.

8.3 Security of OFB Mode

In this section we will prove that OFB mode has pseudorandom ciphertexts (when the
blocklength is blen = λ bits). OFB encryption and decryption both use the forward direc-

2
h�p://blog.ioactive.com/2012/02/ssl-tra�ic-analysis-on-google-maps.html

149

http://blog.ioactive.com/2012/02/ssl-traffic-analysis-on-google-maps.html

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

tion of F , so OFB provides security even when F is not invertible. Therefore we will prove
security assuming F is simply a PRF.

Claim 8.5 OFB mode (Construction 8.4) has CPA$ security, if its underlying block cipher F is a secure
PRF with parameters in = out = λ.

Proof The general structure of the proof is very similar to the proof used for the PRF-based
encryption scheme in the previous chapter (Construction 7.4). This is no coincidence: if
OFB mode is restricted to plaintexts of a single block, we obtain exactly Construction 7.4!

The idea is that each ciphertext block (apart from the IV) is computed as ci := r ⊕mi .
By the one-time pad rule, it su�ces to show that the r values are independently pseudo-
random. Each r value is the result of a call to the PRF. These PRF outputs will be inde-
pendently pseudorandom only if all of the inputs to the PRF are distinct. In OFB mode,
we use the output r of a previous PRF call as input to the next, so it is highly unlikely
that this PRF output r matches a past PRF-input value. To argue this more precisely, the
proof includes hybrids in which r is chosen without replacement (before changing r back
to uniform sampling).

The formal sequence of hybrid libraries is given below:

LOFB

cpa$-real
:

LOFB

cpa$-real

k ← {0, 1}λ

ctxt(m1‖ · · · ‖m`):
r ← {0, 1}λ

c0 := r
for i = 1 to `:
r := F (k, r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

The starting point is LOFB

cpa$-real
, shown

here with the details of OFB �lled in.

ctxt(m1‖ · · · ‖m`):
r ← {0, 1}λ

c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

LF
prf-real

k ← {0, 1}λ

lookup(r):
return F (k, r)

The statements pertaining to the PRF
F have been factored out in terms of
LF

prf-real
.

150

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

ctxt(m1‖ · · · ‖m`):
r ← {0, 1}λ

c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

LF
prf-rand

T := empty

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}λ

return T [x]

LF
prf-real

has been replaced by
LF

prf-rand
. By the PRF security of F ,

the change is indistinguishable.

Next, all of the statements that involve sampling values for the variable r are factored out
in terms of the Lsamp-L library from Lemma 4.11:

challenge(m1‖ · · · ‖m`):
r := samp()
c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

T := empty

lookup(x):
if T [x] unde�ned:
T [x] := samp()

return T [x]

�

Lsamp-L

samp():
r ← {0, 1}λ

return r

Lsamp-L is then replaced by Lsamp-R. By Lemma 4.11, this change is indistinguishable:

ctxt(m1‖ · · · ‖m`):
r := samp()
c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

T := empty

lookup(x):
if T [x] unde�ned:
T [x] := samp()

return T [x]

�

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Arguments to lookup are never repeated in this hybrid, so the middle library can be sig-
ni�cantly simpli�ed:

ctxt(m1‖ · · · ‖m`):
r := samp()
c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

lookup(x):
t := samp()
return t

�

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

151

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Next, Lsamp-R is replaced by Lsamp-L. By Lemma 4.11, this change is indistinguishable:

ctxt(m1‖ · · · ‖m`):
r := samp()
c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

lookup(x):
t := samp()
return t

�

Lsamp-L

samp():
r ← {0, 1}λ

return r

Subroutine calls to lookup and samp are inlined:

ctxt(m1‖ · · · ‖m`):
r ← {0, 1}λ

c0 := r
for i = 1 to `:
r ← {0, 1}λ

ci := r ⊕mi
return c0‖c1‖ · · · ‖c`

Finally, the one-time pad rule is applied within the for-loop (omitting some common steps).
Note that in the previous hybrid, each value of r is used only once as a one-time pad. The
i = 0 case has also been absorbed into the for-loop. The result is LOFB

cpa$-rand
, since OFB

encrypts plaintexts of ` blocks into ` + 1 blocks.

LOFB

cpa$-rand

ctxt(m1‖ · · · ‖m`):
for i = 0 to `:
ci ← {0, 1}

λ

return c0‖c1‖ · · · ‖c`

The sequence of hybrids shows that LOFB

cpa$-real

∼∼∼ L
OFB

cpa$-rand
, and so OFB mode has

pseudorandom ciphertexts. �

We proved the claim assuming F is a PRF only, since OFB mode does not require F to
be invertible. Since we assume a PRF with parameters in = out = λ, the PRP switching
lemma (Lemma 6.7) shows that OFB is secure also when F is a PRP with blocklength n = λ.

8.4 Padding & Ciphertext Stealing

So far we have assumed that all plaintexts are exact multiples of the blocklength. But data
in the real world is not always so accommodating. How are block ciphers used in practice
with data that has arbitrary length?

152

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Padding

Padding just refers to any approach to encode arbitrary-length data into data that is a
multiple of the blocklength. The only requirement is that this encoding is reversible. More
formally, a padding scheme should consist of two algorithms:

I pad: takes as input a string of any length, and outputs a string whose length is a
multiple of the blocklength

I unpad: the inverse of pad. We require that unpad(pad(x)) = x for all strings x .

The idea is that the sender can encrypt pad(x), which is guaranteed to be a multiple of the
blocklength; the receiver can decrypt and run unpad on the result to obtain x .

In the real world, data almost always comes in bytes and not bits, so that will be our
assumption here. In this section we will write bytes in hex, for example 8f . Typical
blocklengths are 128 bits (16 bytes) or 256 bits (32 bytes).

Here are a few common approaches for padding:

Null padding: The simplest padding approach is to just �ll the �nal block with null
bytes (00). The problem with this approach is that it is not always reversible. For exam-
ple, pad(31 41 59) and pad(31 41 59 00) will give the same result. It is not possible to
distinguish between a null byte that was added for padding and one that was intentionally
the last byte of the data.

ANSIX.923 standard: Data is padded with null bytes, except for the last byte of padding
which indicates how many padding bytes there are. In essence, the last byte of the padded
message tells the receiver how many bytes to remove to recover the original message.

Note that in this padding scheme (and indeed in all of them), if the original unpadded
data is already a multiple of the block length, then an entire extra block of padding
must be added. This is necessary because it is possible for the original data to end with
some bytes that look like valid padding (e.g., 00 00 03), and we do not want these bytes
to be removed erroneously.

Example Below are some examples of valid and invalid X.923 padding (using 16-byte blocks):

01 34 11 d9 81 88 05 57 1d 73 c3 00 00 00 00 05 ⇒ valid

95 51 05 4a d6 5a a3 44 af b3 85 00 00 00 00 03 ⇒ valid

71 da 77 5a 5e 77 eb a8 73 c5 50 b5 81 d5 96 01 ⇒ valid

5b 1c 01 41 5d 53 86 4e e4 94 13 e8 7a 89 c4 71 ⇒ invalid

d4 0d d8 7b 53 24 c6 d1 af 5f d6 f6 00 c0 00 04 ⇒ invalid

PKCS#7 standard: If b bytes of padding are needed, then the data is padded not with
null bytes but with b bytes. Again, the last byte of the padded message tells the receiver
how many bytes to remove.

153

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Example Below are some examples of valid and invalid PKCS#7 padding (using 16-byte blocks):

01 34 11 d9 81 88 05 57 1d 73 c3 05 05 05 05 05 ⇒ valid

95 51 05 4a d6 5a a3 44 af b3 85 03 03 03 03 03 ⇒ valid

71 da 77 5a 5e 77 eb a8 73 c5 50 b5 81 d5 96 01 ⇒ valid

5b 1c 01 41 5d 53 86 4e e4 94 13 e8 7a 89 c4 71 ⇒ invalid

d4 0d d8 7b 53 24 c6 d1 af 5f d6 f6 04 c0 04 04 ⇒ invalid

ISO/IEC 7816-4 standard: The data is padded with a 80 byte followed by null bytes.
To remove the padding, remove all trailing null bytes and ensure that the last byte is 80

(and then remove it too).
The signi�cance of 80 is clearer when you write it in binary as 10000000. So another

way to describe this padding scheme is: append a 1 bit, and then pad with 0 bits until
reaching the blocklength. To remove the padding, remove all trailing 0 bits as well as
the rightmost 1 bit. Hence, this approach generalizes easily to padding data that is not a
multiple of a byte.

Example Below are some examples of valid and invalid ISO/IEC 7816-4 padding (using 16-byte blocks):

01 34 11 d9 81 88 05 57 1d 73 c3 80 00 00 00 00 ⇒ valid

95 51 05 4a d6 5a a3 44 af b3 85 03 03 80 00 00 ⇒ valid

71 da 77 5a 5e 77 eb a8 73 c5 50 b5 81 d5 96 80 ⇒ valid

5b 1c 01 41 5d 53 86 4e e4 94 13 e8 7a 89 c4 71 ⇒ invalid

d4 0d d8 7b 53 24 c6 d1 af 5f d6 f6 c4 00 00 00 ⇒ invalid

The choice of padding scheme is not terribly important, and any of these is generally
�ne. Just remember that padding schemes are not a security feature! Padding is a
public method for encoding data, and it does not involve any secret keys. The only purpose
of padding is to enable functionality — using block cipher modes like CBC with data that
is not a multiple of the block length.

Furthermore, as we will see in the next chapter, padding is associated with certain
attacks against improper use of encryption. Even though this is not really the fault of the
padding (rather, it is the fault of using the wrong �avor of encryption), it is such a common
pitfall that it is always worth considering in a discussion about padding.

Ciphertext Stealing

Another approach with a provocative name is ciphertext stealing (CTS, if you are not
yet tired of three-leter acronyms), which results in ciphertexts that are not a multiple of
the blocklength. The main idea behind ciphertext stealing is to use a standard block-cipher
mode that only supports full blocks (e.g., CBC mode), and then simply throw away some
bits of the ciphertext, in such a way that decryption is still possible. If the last plaintext
blocks is j bits short of being a full block, it is generally possible to throw away j bits of
the ciphertext. In this way, a plaintext of n bits will be encrypted to a ciphertext of blen+n
bits, where blen is the length of the extra IV block.

154

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

As an example, let’s see ciphertext stealing as applied to CBC mode. Suppose the
blocklength is blen and the last plaintext block m` is j bits short of being a full block. We
start by extending m` with j zeroes (i.e., null-padding the plaintext) and performing CBC
encryption as usual.

Now our goal is to identify j bits of the CBC ciphertext that can be thrown away while
still making decryption possible. In this case, the appropriate bits to throw away are the
last j bits of c`−1 (the next-to-last block of the CBC ciphertext). The reason is illustrated
in the �gure below:

Fk Fk Fk

⊕ ⊕ ⊕

m`−2 m`−1 m`

c`−2 c`−1 c`

c`−2 c ′
`−1 c`

· · ·

· · ·

· · ·

· · ·

usual CBC encryption


�nal ciphertext:

zero-padding

identical!

Suppose the receiver obtains this CBC ciphertext but the last j bits of c`−1 have been
deleted. How can he/she decrypt? The important idea is that those missing j bits were
redundant, because there is another way to compute them.

In CBC encryption, the last value given as input into the block cipher is c`−1 ⊕m` . Let
us give this value a name x∗ := c`−1 ⊕m` . Since the last j bits ofm` are 0’s,3 the last j bits
of x∗ are the last j bits of c`−1 — the missing bits. Even though these bits are missing from
c`−1, the receiver has a di�erent way of computing them as x∗ := F−1(k, c`).

Putting it all together, the receiver does the following: First, it observes that the ci-
phertext is j bits short of a full block. It computes F−1(k, c`) and takes the last j bits of this
value to be the missing bits from c`−1. With the missing bits recovered, the receiver does
CBC decryption as usual. The result is a plaintext consisting of ` full blocks, but we know
that the last j bits of that plaintext are 0 padding that the receiver can remove.

It is convenient in an implementation for the boundaries between blocks to be in pre-
dictable places. For that reason, it is slightly awkward to remove j bits from the middle of
the ciphertext during encryption (or add them during decryption), as we have done here.
So in practice, the last two blocks of the ciphertext are often interchanged. In the example
above, the resulting ciphertext (after ciphertext stealing) would be:

c0 ‖ c1 ‖ c2 · · · c`−3 ‖ c`−2 ‖ c` ‖ c
′
`−1 , where c ′

`−1 is the �rst blen − j bits of c`−1.

3The receiver knows this fact, because the ciphertext is j bits short of a full block. The length of the
(shortened) ciphertext is a signal about how many 0-bits of padding were used during encryption.

155

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

That way, all ciphertext blocks except the last one are the full blen bits long, and the
boundaries between blocks appear consistently every blen bits. This “optimization” does
add some signi�cant edge cases to any implementation. One must also decide what to do
when the plaintext is already an exact multiple of the blocklength — should the �nal two
ciphertext blocks be swapped even in this case? Below we present an implementation of
ciphertext stealing (CTS) that does not swap the �nal two blocks in this case. This means
that it collapses to plain CBC mode when the plaintext is an exact multiple of the block
length.

Construction 8.6

(CBC-CTS)

Enc(k,m1‖ · · · ‖m`):
// eachmi is blen bits,
// except possiblym`

j := blen − |m` |

m` :=m` ‖0
j

c0 ← {0, 1}
blen:

for i = 1 to `:
ci := F (k,mi ⊕ ci−1)

if j , 0:
remove �nal j bits of c`−1
swap c`−1 and c`

return c0‖c1‖ · · · ‖c`

Dec(k, c0‖ · · · ‖c`):
// each ci is blen bits,
// except possibly c`

j := blen − |c` |
if j , 0:

swap c`−1 and c`
x := last j bits of F−1(k, c`)
c`−1 := c`−1‖x

for i = 1 to `:
mi := F−1(k, ci) ⊕ ci−1

remove �nal j bits ofm`

returnm1‖ · · · ‖m`

The marked lines correspond to plain CBC mode.

Exercises

8.1. Prove that a block cipher in ECB mode does not provide CPA security. Describe a distin-
guisher and compute its advantage.

8.2. Describe OFB decryption mode.

8.3. Describe CTR decryption mode.

8.4. CBC mode:

(a) In CBC-mode encryption, if a single bit of the plaintext is changed, which ciphertext
blocks are a�ected (assume the same IV is used)?

(b) In CBC-mode decryption, if a single bit of the ciphertext is changed, which plaintext
blocks are a�ected?

8.5. Prove that CPA$ security for variable-length plaintexts implies CPA security for variable-
length plaintexts. Where in the proof do you use the fact that |mL | = |mR |?

8.6. Suppose that instead of applying CBC mode to a block cipher, we apply it to one-time pad.
In other words, we replace every occurrence of F (k,?) with k ⊕ ? in the code for CBC
encryption. Show that the result does not have CPA security. Describe a distinguisher
and compute its advantage.

156

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

8.7. Prove that there is an attacker that runs in time O(2λ/2) and that can break CPA security
of CBC mode encryption with constant probability.

8.8. Below are several block cipher modes for encryption, applied to a PRP F with blocklength
blen = λ. For each of the modes:

I Describe the corresponding decryption procedure.

I Show that the mode does not have CPA-security. That means describe a distin-
guisher and compute its advantage.

(a)

Enc(k,m1‖ · · · ‖m`):
r0 ← {0, 1}

λ

c0 := r0
for i = 1 to `:
ri := F (k,mi)

ci := ri ⊕ ri−1
return c0‖ · · · ‖c`

(b)

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

λ

for i = 1 to `:
ci := F (k,mi) ⊕ ci−1

return c0‖ · · · ‖c`

(c)

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

λ

m0 := c0
for i = 1 to `:
ci := F (k,mi) ⊕mi−1

return c0‖ · · · ‖c`

(d)

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

λ

r0 := c0
for i = 1 to `:
ri := ri−1 ⊕mi
ci := F (k, ri)

return c0‖ · · · ‖c`

Mode (a) is similar to CBC, except the xor happens after, rather than before, the block
cipher application. Mode (c) is essentially the same as CBC decryption.

8.9. Suppose you observe a CBC ciphertext and two of its blocks happen to be identical. What
can you deduce about the plaintext? State some non-trivial property of the plaintext that
doesn’t depend on the encryption key.

8.10. The CPA$-security proof for CBC encryption has a slight complication compared to the
proof of OFB encryption. Recall that an important part of the proof is arguing that all
inputs to the PRF are distinct.

In OFB, outputs of the PRF were fed directly into the PRF as inputs. The adversary had no
in�uence over this process, so it wasn’t so bad to argue that all PRF inputs were distinct
(with probability negligibly close to 1).

By contrast, CBC mode takes an output block from the PRF, xor’s it with a plaintext block
(which is after all chosen by the adversary), and uses the result as input to the next PRF
call. This means we have to be a little more careful when arguing that CBC mode gives
distinct inputs to all PRF calls (with probability negligibly close to 1).

157

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

(a) Prove that the following two libraries are indistinguishable:

Lle�

samp(m ∈ {0, 1}λ):
r ← {0, 1}λ

return r

Lright

R := ∅

samp(m ∈ {0, 1}λ):
r ← {r ′ ∈ {0, 1}λ | r ′ ⊕m < R}
R := R ∪ {r ⊕m}
return r

Hint:

UseLemma4.12.

(b) Using part (a), and the security of the underlying PRF, prove the CPA$-security of CBC
mode.

Hint:

InLright,letRcorrespondtothesetofallinputssenttothePRF.Letmcorrespondtothenext
plaintextblock.Insteadofsamplingr(theoutputofthePRF)uniformlyasinLle�,wesample
rsothatr⊕mhasneverbeenusedasaPRF-inputbefore.ThisguaranteesthatthenextPRF
callwillbeona“fresh”input.

Note: Appreciate how important it is that the adversary chooses plaintext block m
before “seeing” the output r from the PRF (which is included in the ciphertext).

? 8.11. Prove that CTR mode achieves CPA$ security.

Hint: UseLemma4.12toshowthatthereisonlynegligibleprobabilityofchosingtheIVsothattheblock
ciphergetscalledonthesamevaluetwice.

8.12. Let F be a secure PRF with out = in = λ and let F (2) denote the function F (2)(k, r) =
F (k, F (k, r)).

(a) Prove that F (2) is also a secure PRF.

(b) What if F is a secure PRP with blocklength blen? Is F (2) also a secure PRP?

8.13. This question refers to the nonce-based notion of CPA security.

(a) Show a de�nition for CPA$ security that incorporates both the nonce-based syntax of
Section 7.1 and the variable-length plaintexts of Section 8.2.

(b) Show that CBC mode not secure as a nonce-based scheme (where the IV is used as a
nonce).

(c) Show that CTR mode is not secure as a nonce-based scheme (where the IV is used as a
nonce). Note that if we restrict (randomized) CTR mode to a single plaintext block, we
get the CPA-secure scheme of Construction 7.4, which is is secure as a nonce-based
scheme. The attack must therefore use the fact that plaintexts can be longer than one
block. (Does the attack in part (b) work with single-block plaintexts?)

8.14. One way to convert a randomized-IV-based construction into a nonce-based construction
is called the synthetic IV approach.

158

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

(a) The synthetic-IV (SIV) approach applied to CBC mode is shown below. Prove that it is
CPA/CPA$ secure as a nonce-based scheme (refer to the security de�nitions from the
previous problem):

SIV-CBC.Enc

(
(k1,k2),v,m1‖ · · · ‖m`

)
:

c0 := F (k1,v)

for i = 1 to `:
ci := F (k2 ,mi ⊕ ci−1)

return c0‖c1‖ · · · ‖c`

Instead of chosing a random IV c0, it is generated deterministically from the nonce v
using the block cipher F . In your proof, you can use the fact that randomized CBC
mode has CPA$ security, and that F is also a secure PRF.

(b) It is important that the SIV construction uses two keys for di�erent purposes. Suppose
that we instead used the same key throughout:

BadSIV-CBC.Enc(k,v,m1‖ · · · ‖m`):
c0 := F (k ,v)
for i = 1 to `:
ci := F (k ,mi ⊕ ci−1)

return c0‖c1‖ · · · ‖c`

Show that the resulting scheme does not have CPA$ security (in the nonce-based
sense). Ignore the complication of padding, and only consider plaintexts that are a
multiple of the blocklength. Describe a successful distinguisher and compute its ad-
vantage.

(c) For randomized encryption, it is necessary to include the IV in the ciphertext; oth-
erwise the receiver cannot decrypt. In the nonce-based setting we assume that the
receiver knows the correct nonce (e.g., from some out-of-band communication). With
that in mind, we could modify the scheme from part (b) to remove c0, since the receiver
could reconstruct it anyway from v .
Show that even with this modi�cation, the scheme still fails to be CPA-secure under
the nonce-based de�nition.

8.15. Implementers are sometimes cautious about IVs in block cipher modes and may attempt
to “protect” them. One idea for protecting an IV is to prevent it from directly appearing in
the ciphertext. The modi�ed CBC encryption below sends the IV through the block cipher
before including it in the ciphertext:

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

blen

c ′0 := F (k, c0)

for i = 1 to `:
ci := F (k,mi ⊕ ci−1)

return c ′0 ‖c1‖ · · · ‖c`

159

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

This ciphertext can be decrypted by �rst computing c0 := F−1(k, c ′0) and then doing usual
CBC decryption on c0‖ · · · ‖c` .

Show that this new scheme is not CPA-secure (under the traditional de�nitions for ran-
domized encryption).

8.16. Suppose a bad implementation leads to two ciphertexts being encrypted with the same IV,
rather than a random IV each time.

(a) Characterize as thoroughly as you can what information is leaked about the plaintexts
when CBC mode was used and an IV is repeated.

(b) Characterize as thoroughly as you can what information is leaked about the plaintexts
when CTR mode was used and an IV is repeated.

8.17. Describe how to extend CTR and OFB modes to deal with plaintexts of arbitrary length
(without using padding). Why is it so much simpler than CBC ciphertext stealing?

8.18. The following technique for ciphertext stealing in CBC was proposed in the 1980s and was
even adopted into commercial products. Unfortunately, it’s insecure.

Suppose the �nal plaintext block m` is blen − j bits long. Rather than padding the �nal
block with zeroes, it is padded with the last j bits of ciphertext block c`−1. Then the padded
block m` is sent through the PRP to produce the �nal ciphertext block c` . Since the �nal
j bits of c`−1 are recoverable from c` , they can be discarded.

If the �nal block of plaintext is already blen bits long, then standard CBC mode is used.

Fk Fk Fk

⊕ ⊕

m`−2 m`−1 m`

c`−2 c`−1 c`

· · ·

· · ·

· · ·

pad with these bits

discard

Show that the scheme does not satisfy CPA$ security. Describe a distinguisher and com-
pute its advantage.

Hint:

Askforseveralencryptionsofplaintextswhoselastblockisblen−1bitslong.

8.19. Prove that any CPA-secure encryption remains CPA-secure when augmented by padding
the input.

8.20. Prove that CBC with ciphertext stealing has CPA$ security. You may use the fact that CBC
mode has CPA$ security when restricted to plaintexts whose length is an exact multiple
of the blocklength (i.e., CBC mode without padding or ciphertext stealing).

160

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Hint:

LetCBCdenotestandardCBCmoderestrictedtoplaintextspaceM=({0,1}blen)∗,andlet
CBC-CTSdenoteCBCmodewithciphertextstealing(soM={0,1}

∗
).Observethatitiseasy

toimplementacalltoL
CBC-CTS

cpa$-realbyarelatedcalltoL
CBC

cpa$-realplusasmallamountofadditional
processing.

8.21. Propagating CBC (PCBC) mode refers to the following variant of CBC mode:

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

blen:
m0 := 0blen

for i = 1 to `:
ci := F (k,mi ⊕ ci−1 ⊕mi−1)

return c0‖c1‖ · · · ‖c`

Fk Fk

$

⊕ ⊕

m1 m2

c0 c1 c2

· · ·

· · ·

· · ·

(a) Describe PCBC decryption.

(b) Assuming that standard CBC mode has CPA$-security (for plaintexts that are exact
multiple of the block length), prove that PCBC mode also has CPA$-security (for the
same plaintext space).

Hint:

WritePCBCencryptionusingplainCBCencryptionasasubroutine.

(c) Consider the problem of adapting CBC ciphertext stealing to PCBC mode. Suppose
the �nal plaintext block m` has blen − j bits, and we pad it with the �nal j bits of the
previous plaintext block m`−1. Show that discarding the last j bits of c`−1 still allows
for correct decryption and results in CPA$ security.

Hint:

SeeExercise8.20.

(d) Suppose the �nal plaintext block is padded using the �nal j bits of the previous cipher-
text block c`−1. Although correct decryption is still possible, the construction is no
longer secure. Show an attack violating the CPA$-security of this construction. Why
doesn’t the proof approach from part (c) work?

Hint:

Askforseveralencryptionsofplaintextswhoselastblockis1bitlong.

161

9 Chosen Ciphertext A�acks

In this chapter we discuss the limitations of the CPA security de�nition. In short, the CPA
security de�nition considers only the information leaked to the adversary by honestly-
generated ciphertexts. It does not, however, consider what happens when an adversary
is allowed to inject its own maliciously crafted ciphertexts into an honest system. If that
happens, then even a CPA-secure encryption scheme can fail in spectacular ways. We
begin by seeing such an example of spectacular and surprising failure, called a padding
oracle attack:

9.1 Padding Oracle A�acks

Imagine a webserver that receives CBC-encrypted ciphertexts for processing. When re-
ceiving a ciphertext, the webserver decrypts it under the appropriate key and then checks
whether the plaintext has valid X.923 padding (Section 8.4).

Importantly, suppose that the observable behavior of the webserver changes depending
on whether the padding is valid. You can imagine that the webserver gives a special error
message in the case of invalid padding. Or, even more cleverly (but still realistic), the
di�erence in response time when processing a ciphertext with invalid padding is enough to
allow the attack to work.1 The mechanism for learning padding validity is not important —
what is important is simply the fact that an attacker has some way to determine whether
a ciphertext encodes a plaintext with valid padding. No matter how the attacker comes
by this information, we say that the attacker has access to a padding oracle, which gives
the same information as the following subroutine:

paddingoracle(c):
m := Dec(k, c)
return validpad(m)

We call this a padding oracle because it answers only one speci�c kind of question about
the input. In this case, the answer that it gives is always a single boolean value.

It does not seem like a padding oracle is leaking useful information, and that there is no
cause for concern. Surprisingly, we can show that an attacker who doesn’t know the en-
cryption key k can use a padding oracle alone to decrypt any ciphertext of its choice! This is
true no matter what else the webserver does. As long as it leaks this one bit of information
on ciphertexts that the attacker can choose, it might as well be leaking everything.

1For this reason, it is necessary to write the unpadding algorithm so that every execution path through
the subroutine takes the same number of CPU cycles.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Malleability of CBC Encryption

Recall the de�nition of CBC decryption. If the ciphertext is c = c0 · · · c` then the ith
plaintext block is computed as:

mi := F−1(k, ci) ⊕ ci−1.

From this we can deduce two important facts:

I Two consecutive blocks (ci−1, ci) taken in isolation are a valid encryption of mi .
Looking ahead, this fact allows the attacker to focus on decrypting a single block at
a time.

I xoring a ciphertext block with a known value (say, x) has the e�ect of xoring the
corresponding plaintext block by the same value. In other words, for all x , the ci-
phertext (ci−1 ⊕ x , ci) decrypts tomi ⊕ x :

Dec(k, (ci−1 ⊕ x , ci)) = F−1(k, ci) ⊕ (ci−1 ⊕ x) = (F
−1(k, ci) ⊕ ci−1) ⊕ x =mi ⊕ x .

If we send such a ciphertext (ci−1 ⊕ x , ci) to the padding oracle, we would therefore learn
whether mi ⊕ x is a (single block) with valid padding. Instead of thinking in terms of
padding, it might be best to think of the oracle as telling you whethermi ⊕ x ends in one
of the su�xes 01 , 00 02 , 00 00 03 , etc.

By carefully choosing di�erent values x and asking questions of this form to the
padding oracle, we will show how it is possible to learn all of mi . We summarize the
capability so far with the following subroutine:

// suppose c encrypts an (unknown) plaintextm1‖ · · · ‖m`

// doesmi ⊕ x end in one of the valid pading strings?

checkxor(c, i,x):
return paddingoracle(ci−1 ⊕ x , ci)

Given a ciphertext c that encrypts an unknown messagem, we can see that an adver-
sary can generate another ciphertext whose contents are related tom in a predictable way.
This property of an encryption scheme is called malleability.

Learning the Last Byte of a Block

We now show how to use the checkxor subroutine to determine the last byte of a plaintext
block m. There are two cases to consider, depending on the contents of m. The attacker
does not initially know which case holds:

For the �rst (and easier) of the two cases, suppose the second-to-last byte of m is
nonzero. We will try every possible byte b and ask whetherm⊕b has valid padding. Since
m is a block and b is a single byte, when we write m ⊕ b we mean that b is extended on
the left with zeroes. Since the second-to-last byte ofm (and hencem ⊕ b) is nonzero, only
one of these possibilities will have valid padding — the one in which m ⊕ b ends in byte
01 . Therefore, if b is the candidate byte that succeeds (i.e.,m ⊕ b has valid padding) then
the last byte ofm must be b ⊕ 01 .

163

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Example Using learnlastbyte to learn the last byte of a plaintext block:

· · · a0 42 ?? m = unknown plaintext block

· · · 00 00 b b = byte that causes oracle to return true⊕

= · · · a0 42 01 valid padding⇔ b ⊕ ?? = 01

⇔ ?? = 01 ⊕ b

For the other case, suppose the second-to-last byte ofm is zero. Thenm ⊕ b will have
valid padding for several candidate values of b:

Example Using learnlastbyte to learn the last byte of a plaintext block:

· · · a0 00 ?? · · · a0 00 ?? m = unknown plaintext

· · · 00 00 b1 · · · 00 00 b2 bi = candidate bytes⊕

=

⊕

=· · · a0 00 01 · · · a0 00 02 two candidates cause oracle to return true

· · · a0 00 ?? · · · a0 00 ??

· · · 00 01 b1 · · · 00 01 b2 same b1,b2, but change next-to-last byte⊕

=

⊕

=· · · a0 01 01 · · · a0 01 02 only one causes oracle to return true

⇒ ?? = b1 ⊕ 01

Whenever more than one candidate b value yields valid padding, we know that the
second-to-last byte ofm is zero (in fact, by counting the number of successful candidates,
we can know exactly how many zeroes precede the last byte ofm).

If the second-to-last byte of m is zero, then the second-to-last byte of m ⊕ 01 b is
nonzero. The only way for both strings m ⊕ 01 b and m ⊕ b to have valid padding is
whenm ⊕ b ends in byte 01 . We can re-try all of the successful candidate b values again,
this time with an extra nonzero byte in front. There will be a unique candidate b that is
successful in both rounds, and this will tell us that the last byte ofm is b ⊕ 01 .

The overall approach for learning the last byte of a plaintext block is summarized in
the learnlastbyte subroutine in Figure 9.1. The set B contains the successful candidate
bytes from the �rst round. There are at most 16 elements in B after the �rst round, since
there are only 16 valid possibilities for the last byte of a properly padded block. In the worst
case, learnlastbyte makes 256 + 16 = 272 calls to the padding oracle (via checkxor).

Learning Other Bytes of a Block

Once we have learned one of the trailing bytes of a plaintext block, it is slightly easier
to learn additional ones. Suppose we know the last 3 bytes of a plaintext block, as in the
example below. We would like to use the padding oracle to discover the 4th-to-last byte.

164

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Example Using learnprevbyte to learn the 4th-to-last byte when the last 3 bytes of the block are
already known.

· · · ?? a0 42 3c m = partially unknown plaintext block

· · · 00 00 00 04 p = string ending in 04

· · · 00 a0 42 3c s = known bytes ofm

· · · b 00 00 00 y = candidate byte b shifted into place⊕

⊕

⊕

= · · · 00 00 00 04 valid padding⇔ ?? = b

Since we know the last 3 bytes ofm, we can calculate a string x such thatm⊕x ends in
00 00 04 . Now we can try xor’ing the 4th-to-last byte ofm ⊕ x with di�erent candidate
bytes b, and asking the padding oracle whether the result has valid padding. Valid padding
only occurs when the result has 00 in its 4th-to-last byte, and this happens exactly when
the 4th-to-last byte ofm exactly matches our candidate byte b.

The process is summarized in the learnprevbyte subroutine in Figure 9.1. In the
worst case, this subroutine makes 256 queries to the padding oracle.

Putting it all together. We now have all the tools required to decrypt any ciphertext
using only the padding oracle. The process is summarized below in the learnall subrou-
tine.

In the worst case, 256 queries to the padding oracle are required to learn each byte of
the plaintext.2 However, in practice the number can be much lower. The example in this
section was inspired by a real-life padding oracle attack3 which includes optimizations that
allow an attacker to recover each plaintext byte with only 14 oracle queries on average.

9.2 What Went Wrong?

CBC encryption provides CPA security, so why didn’t it save us from padding oracle at-
tacks? How was an attacker able to completely obliterate the privacy of encryption?

1. First, CBC encryption (in fact, every encryption scheme we’ve seen so far) has a
property called malleability. Given an encryption c of an unknown plaintext m,
it is possible to generate another ciphertext c ′ whose contents are related to m in
a predictable way. In the case of CBC encryption, if ciphertext c0‖ · · · ‖c` encrypts
a plaintext m1‖ · · · ‖m` , then ciphertext (ci−1 ⊕ x , ci) encrypts the related plaintext
mi ⊕ x .

In short, if an encryption scheme is malleable, then it allows information contained
in one ciphertext to be “transferred” to another ciphertext.

2It might take more than 256 queries to learn the last byte. But whenever learnlastbyte uses more than
256 queries, the side e�ect is that you’ve also learned that some other bytes of the block are zero. This saves
you from querying the padding oracle altogether to learn those bytes.

3How to Break XML Encryption, Tibor Jager and Juraj Somorovsky. ACM CCS 2011.

165

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

checkxor(c, i,x):
// if c encrypts (unknown)
// plaintextm1 · · ·m` ; then
// doesmi ⊕ x (by itself)
// have valid padding?
return paddingoracle(ci−1 ⊕ x , ci)

learnlastbyte(c, i):
// deduce the last byte of
// plaintext blockmi
B := ∅
for b = 00 to ff :

if checkxor(c, i,b):
B := B ∪ {b}

if |B | = 1:
b := only element of B
return b ⊕ 01

else:
for each b ∈ B:

if checkxor(c, i, 01 b):
return b ⊕ 01

learnprevbyte(c, i, s):
// knowing thatmi ends in s ,
// �nd rightmost unknown
// byte ofmi
p := |s | + 1
for b = 00 to ff :
y := b 00 · · · 00︸ ︷︷ ︸

|s |

if checkxor(c, i,p ⊕ s ⊕ y):
return b

learnblock(c, i):
// learn entire plaintext blockmi
s := learnlastbyte(c, i)
do 15 times:
b := learnprevbyte(c, i, s)
s := b‖s

return s

learnall(c):
// learn entire plaintextm1 · · ·m`

m := ϵ
` := number of non-IV blocks in c
for i = 1 to `:
m :=m‖learnblock(c, i)

returnm

Figure 9.1: Summary of padding oracle a�ack.

2. Second, you may have noticed that the CPA security de�nition makes no mention
of the Dec algorithm. The Dec algorithm shows up in our de�nition for correctness,
but it is nowhere to be found in the Lcpa-? libraries. Decryption has no impact on
CPA security!

But the padding oracle setting involved the Dec algorithm — in particular, the ad-
versary was allowed to see some information about the result of Dec applied to
adversarially-chosen ciphertexts. Because of that, the CPA security de�nition does
not capture the padding oracle attack scenario.

The bottom line is: give an attacker a malleable encryption scheme and access to any
partial information related to decryption, and he/she can get information to leak out in
surprising ways. As the padding-oracle attack demonstrates, even if only a single bit of
information (i.e., the answer to a yes/no question about a plaintext) is leaked about the
result of decryption, this is frequently enough to extract the entire plaintext.

166

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

If we want security even under the padding-oracle scenario, we need a better security
de�nition and encryption schemes that achieve it. That’s what the rest of this chapter is
about.

Discussion

I Is this a realistic concern? You may wonder whether this whole situation is some-
what contrived just to give cryptographers harder problems to solve. That was prob-
ably a common attitude towards the security de�nitions introduced in this chapter.
However, in 1998, Daniel Bleichenbacher demonstrated a devastating attack against
early versions of the SSL protocol. By presenting millions of carefully crafted ci-
phertexts to a webserver, an attacker could eventually recover arbitrary SSL session
keys.

In practice, it is hard to make the external behavior of a server not depend on the
result of decryption. This makes CPA security rather fragile in the real world. In
the case of padding oracle attacks, mistakes in implementation can lead to di�er-
ent error messages for invalid padding. In other cases, even an otherwise careful
implementation can provide a padding oracle through a timing side-channel (if the
server’s response time is di�erent for valid/invalid padded plaintexts).

As we will see, it is in fact possible to provide security in these kinds of settings, and
with low additional overhead. These days there is rarely a good excuse for using
encryption which is only CPA-secure.

I Padding is in the name of the attack. But padding is not the culprit. The culprit is
using a (merely) CPA-secure encryption scheme while allowing some information
to leak about the result of decryption. The exercises expand on this idea further.

I If padding is added to only the last block of the plaintext, how can this at-
tack recover the entire plaintext? This common confusion is another reason to
not place so much blame on the padding scheme. A padding oracle has the following
behavior: “give me an encryption of m1‖ · · · ‖m` and I’ll tell you some information
aboutm` (whether it ends with a certain su�x).” Indeed, the padding oracle checks
only the last block. However, CBC mode has the property that if you have an en-
cryption of m1‖ · · · ‖m` , then you can easily construct a di�erent ciphertext that
encrypts m1‖ · · · ‖m`−1. If you send this ciphertext to the padding oracle, you will
get information about m`−1. By modifying the ciphertext (via the malleability of
CBC), you give di�erent plaintext blocks the chance to be the “last block” that the
padding oracle looks at.

I The attack seems super�cially like brute force, but it is not: The attack makes 256
queries per byte of plaintext, so it costs about 256` queries for a plaintext of ` bytes.
Brute-forcing the entire plaintext would cost 256` since that’s how many `-byte
plaintexts there are. So the attack is exponentially better than brute force. The
lesson is: brute-forcing small pieces at a time is much better then brute-forcing the
entire thing.

167

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

9.3 Defining CCA Security

Our goal now is to develop a new security de�nition — one that considers an adversary that
can construct malicious ciphertexts and observe the e�ects caused by their decryption. We
will start with the basic approach of CPA security, with left and right libraries that di�er
only in which of two plaintexts they encrypt.

In a typical system, an adversary might be able to learn only some speci�c partial
information about the Dec process. In the padding oracle attack, the adversary was able
to learn only whether the result of decryption had valid padding.

However, we are trying to come up with a security de�nition that is useful no mat-
ter how the encryption scheme is deployed. How can we possibly anticipate every kind of
partial information that might make its way to the adversary in every possible usage of the
encryption scheme? The safest choice is to be as pessimistic as possible, as long as we end
up with a security notion that we can actually achieve in the end. So let’s just allow the
adversary to totally decrypt arbitrary ciphertexts of its choice. In other words, if we
can guarantee security when the adversary has full information about decrypted cipher-
texts, then we certainly have security when the adversary learns only partial information
about decrypted ciphertexts (as in a typical real-world system).

But this presents a signi�cant problem. An adversary can do c∗ := eavesdrop(mL,mR)

to obtain a challenge ciphertext, and then immediately ask for that ciphertext c∗ to be
decrypted. This will obviously reveal to the adversary whether it is linked to the left or
right library.

So, simply providing unrestricted Dec access to the adversary cannot lead to a reason-
able security de�nition (it is a security de�nition that can never be satis�ed). The simplest
way to patch this obvious problem with the de�nition is to allow the adversary to ask for
the decryption of any ciphertext, except those produced in response to eavesdrop
queries. In doing so, we arrive at the �nal security de�nition: security against chosen-
ciphertext attacks, or CCA-security:

Definition 9.1

(CCA security)

Let Σ be an encryption scheme. We say that Σ has security against chosen-ciphertext
a�acks (CCA security) if LΣ

cca-L

∼∼∼ L
Σ
cca-R

, where:

LΣ
cca-L

k ← Σ.KeyGen

S := ∅

eavesdrop(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mL)

S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return Σ.Dec(k, c)

LΣ
cca-R

k ← Σ.KeyGen

S := ∅

eavesdrop(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mR)

S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return Σ.Dec(k, c)

168

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

In this de�nition, the set S keeps track of the ciphertexts that have been generated by
the eavesdrop subroutine. The decrypt subroutine refuses to decrypt these ciphertexts,
but will gladly decrypt any other ciphertext of the adversary’s choice.

An Example

The padding oracle attack already demonstrates that CBC mode does not provide secu-
rity in the presence of chosen ciphertext attacks. But that attack was quite complicated
since the adversary was restricted to learn just 1 bit of information at a time about a de-
crypted ciphertext. An attack against full CCA security can be much more direct, since
the adversary has full access to decrypted ciphertexts.

Example Consider the adversary below attacking the CCA security of CBC mode (with block length
blen)

A

c = c0‖c1‖c2 := eavesdrop(02blen, 12blen)

m := decrypt(c0‖c1)
returnm

?
= 0blen

It can easily be veri�ed that this adversary achieves advantage 1 distinguishing Lcca-L from
Lcca-R. The attack uses the fact (also used in the padding oracle attack) that if c0‖c1‖c2
encryptsm1‖m2, then c0‖c1 encryptsm1. To us, it is obvious that ciphertext c0‖c1 is related
to c0‖c1‖c2. Unfortunately for CBC mode, the security de�nition is not very clever — since
c0‖c1 is simply di�erent than c0‖c1‖c2, the decrypt subroutine happily decrypts it.

Example Perhaps unsurprisingly, there are many very simple ways to catastrophically attack the CCA
security of CBC-mode encryption. Here are some more (where x denotes the result of �ipping
every bit in x):

A ′

c0‖c1‖c2 := eavesdrop(02blen, 12blen)

m := decrypt(c0‖c1‖c2)
ifm begins with 0blen return 1 else return 0

A ′′

c0‖c1‖c2 := eavesdrop(02blen, 12blen)

m := decrypt(c0‖c1‖c2)
returnm

?
= 1blen‖0blen

The �rst attack uses the fact that modifying c2 has no e�ect on the �rst plaintext block. The
second attack uses the fact that �ipping every bit in the IV �ips every bit inm1.

Again, in all of these cases, the decrypt subroutine is being called on a di�erent (but
related) ciphertext than the one returned by eavesdrop.

169

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Discussion

So if I use a CCA-secure encryption scheme, I should never decrypt a ciphertext
that I encrypted myself?

Remember: when we de�ne the Enc and Dec algorithms of an encryption scheme,
we are describing things from the normal user’s perspective. As a user of an encryption
scheme, you can encrypt and decrypt whatever you like. It would indeed be strange if you
encrypted something knowing that it should never be decrypted. What’s the point?

The security de�nition describes things from the attacker’s perspective. The Lcca-?

libraries tell us what are the circumstances under which the encryption scheme provides se-
curity? They say (roughly):

an attacker can’t tell what’s inside a ciphertext c∗, even if she has some partial
information about that plaintext, even if she had some partial in�uence over
the choice of that plaintext, and even if she is allowed to decrypt any other
ciphertext she wants.

Of course, if a real-world system allows an attacker to learn the result of decrypting c∗,
then by de�nition the attacker learns what’s inside that ciphertext.

CCA security is deeply connected with the concept of malleability. Malleability
means that, given a ciphertext that encrypts an unknown plaintextm, it is possible to gen-
erate a di�erent ciphertext that encrypts a plaintext that is related to m in a predictable
way. For example:

I If c0‖c1‖c2 is a CBC encryption ofm1‖m2, then c0‖c1 is a CBC encryption ofm1.

I If c0‖c1‖c2 is a CBC encryption of m1‖m2, then c0‖c1‖c2‖0
blen is a CBC encryption

of some plaintext that begins withm1‖m2.

I If c0‖c1 is a CBC encryption ofm1, then (c0 ⊕ x)‖c1 is a CBC encryption ofm1 ⊕ x .

Note from the second example that we don’t need to know exactly the relationship between
the old and new ciphertexts.

If an encryption scheme is malleable, then a typical attack against its CCA security
would work as follows:

1. Request an encryption c of some plaintext.

2. Applying the malleability of the scheme, modify c to some other ciphertext c ′.

3. Ask for c ′ to be decrypted.

Since c ′ , c , the security library allows c ′ to be decrypted. The malleability of the scheme
says that the contents of c ′ should be related to the contents of c . In other words, seeing
the contents of c ′ should allow the attacker to determine what was initially encrypted in
c .

170

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Pseudorandom Ciphertexts

We can also modify the pseudorandom-ciphertexts security de�nition (CPA$ security) in
a similar way:

Definition 9.2

(CCA$ security)

Let Σ be an encryption scheme. We say that Σ has pseudorandom ciphertexts in the
presence of chosen-ciphertext a�acks (CCA$ security) if LΣ

cca$-real

∼∼∼ L
Σ
cca$-rand

, where:

LΣ
cca$-real

k ← Σ.KeyGen

S := ∅

ctxt(m ∈ Σ.M):
c := Σ.Enc(k,m)

S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return Σ.Dec(k, c)

LΣ
cca$-rand

k ← Σ.KeyGen

S := ∅

ctxt(m ∈ Σ.M):
c ← Σ.C(|m |)

S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return Σ.Dec(k, c)

Just like for CPA security, if a scheme has CCA$ security, then it also has CCA security,
but not vice-versa. See the exercises.

9.4? A Simple CCA-Secure Scheme

Recall the de�nition of a strong pseudorandom permutation (PRP) (De�nition 6.13). A
strong PRP is one that is indistinguishable from a randomly chosen permutation, even to
an adversary that can make both forward (i.e., to F) and reverse (i.e., to F−1) queries.

This concept has some similarity to the de�nition of CCA security, in which the ad-
versary can make queries to both Enc and its inverse Dec. Indeed, a strong PRP can be
used to construct a CCA-secure encryption scheme in a natural way:

Construction 9.3 Let F be a pseudorandom permutation with block length blen = n + λ. De�ne the following
encryption scheme with message spaceM = {0, 1}n :

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m):
r ← {0, 1}λ

return F (k,m‖r)

Dec(k, c):
v := F−1(k, c)
return �rst n bits of v

In this scheme, m is encrypted by appending a random value r to it, then applying a
PRP. While this scheme is conceptually quite simple, it is generally not used in practice
since it requires a block cipher with a fairly large block size, and these are rarely encoun-
tered.

We can informally reason about the security of this scheme as follows:

171

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

I Imagine an adversary linked to one of the CCA libraries. As long as the random
value r does not repeat, all inputs to the PRP are distinct. The guarantee of a pseu-
dorandom function/permutation is that its outputs (which are the ciphertexts in this
scheme) will therefore all look independently uniform.

I The CCA library prevents the adversary from asking for c to be decrypted, if c was
itself generated by the library. For any other value c ′ that the adversary asks to be
decrypted, the guarantee of a strong PRP is that the result will look independently
random. In particular, the result will not depend on the choice of plaintexts used to
generate challenge ciphertexts. Since this choice of plaintexts is the only di�erence
between the two CCA libraries, these decryption queries (intuitively) do not help
the adversary.

We now prove the CCA security of Construction 9.3 formally:

Claim 9.4 If F is a strong PRP (De�nition 6.13) then Construction 9.3 has CCA$ security (and therefore
CCA security).

Proof As usual, we prove the claim in a sequence of hybrids.

LΣ
cca$-real

:

LΣ
cca$-real

k ← {0, 1}λ

S := ∅

ctxt(m):
r ← {0, 1}λ

c := F (k,m‖r)
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return �rst n bits of F−1(k, c)

The starting point is LΣ
cca$-real

, as expected, where
Σ refers to Construction 9.3.

172

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

S := ∅
T ,Tinv := empty assoc. arrays

ctxt(m):
r ← {0, 1}λ

if T [m‖r] unde�ned:
c ← {0, 1}blen \T .values

T [m‖r] := c; Tinv[c] :=m‖r
c := T [m‖r]

S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

if Tinv[c] unde�ned:
m‖r ← {0, 1}blen \Tinv.values

Tinv[c] :=m‖r ; T [m‖r] := c
return �rst n bits of Tinv[c]

We have applied the strong PRP security (De�ni-
tion 6.13) of F , skipping some standard intermedi-
ate steps. We factored out all invocations of F and
F−1 in terms of the Lsprp-real library, replaced that
library with Lsprp-rand, and �nally inlined it.

This proof has some subtleties, so it’s a good time to stop and think about what needs to
be done. To prove CCA$-security, we must reach a hybrid in which the responses of ctxt
are uniform. In the current hybrid there are two properties in the way of this goal:

I The ciphertext values c are sampled from {0, 1}blen \T .values, rather than {0, 1}blen.

I When the if-condition in ctxt is false, the return value of ctxt is not a fresh ran-
dom value but an old, repeated one. This happens when T [m‖r] is already de�ned.
Note that both ctxt and decrypt assign to T , so either one of these subroutines
may be the cause of a pre-existing T [m‖r] value.

Perhaps the most subtle fact about our current hybrid is that arguments of ctxt can
a�ect responses from decrypt! In ctxt, the library assigns m‖r to a value Tinv[c]. Later
calls to decrypt will not read this value directly; these values of c are o�-limits due to
the guard condition in the �rst line of decrypt. However, decrypt samples a value from
{0, 1}blen \ Tinv.values, which indeed uses the values Tinv[c]. To show CCA$ security, we
must remove this dependence of decrypt on previous values given to ctxt.

173

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

S := ∅; R := ∅
T ,Tinv := empty assoc. arrays

ctxt(m):
r ← {0, 1}λ

if T [m‖r] unde�ned:
c ← {0, 1}blen \T .values

T [m‖r] := c; Tinv[c] :=m‖r
R := R ∪ {r }

c := T [m‖r]
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

if Tinv[c] unde�ned:
m‖r ← {0, 1}blen \Tinv.values

Tinv[c] :=m‖r ; T [m‖r] := c
R := R ∪ {r }

return �rst n bits of Tinv[c]

We have added some book-keeping that is not used
anywhere. Every time an assignment of the form
T [m‖r] happens, we add r to the set R. Looking
ahead, we eventually want to ensure that r is cho-
sen so that the if-statement in ctxt is always taken,
and the return value of ctxt is always a fresh ran-
dom value.

S := ∅; R := ∅
T ,Tinv := empty assoc. arrays

ctxt(m):
r ← {0, 1}λ \ R

if T [m‖r] unde�ned:
c ← {0, 1}blen

T [m‖r] := c; Tinv[c] :=m‖r
R := R ∪ {r }

c := T [m‖r]
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

if Tinv[c] unde�ned:
m‖r ← {0, 1}blen

Tinv[c] :=m‖r ; T [m‖r] := c
R := R ∪ {r }

return �rst n bits of Tinv[c]

We have applied Lemma 4.12 three separate times.
The standard intermediate steps (factor out, swap
library, inline) have been skipped, and this shows
only the �nal result.

In ctxt, we’ve added a restriction to how r is sam-
pled. Looking ahead, sampling r in this way means
that the if-statement in ctxt is always taken.

In ctxt, we’ve removed the restriction in how c is
sampled. Since c is the �nal return value of ctxt,
this gets us closer to our goal of this return value
being uniformly random.

In decrypt, we have removed the restriction in
how m‖r is sampled. As described above, this is
becauseTinv.values contains previous arguments of
ctxt, and we don’t want these arguments to a�ect
the result of decrypt in any way.

174

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

S := ∅; R := ∅
T ,Tinv := empty assoc. arrays

ctxt(m):
r ← {0, 1}λ \ R

c ← {0, 1}blen

T [m‖r] := c; Tinv[c] :=m‖r
R := R ∪ {r }
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

if Tinv[c] unde�ned:
m‖r ← {0, 1}blen

Tinv[c] :=m‖r ; T [m‖r] := c
R := R ∪ {r }

return �rst n bits of Tinv[c]

In the previous hybrid, the if-statement in ctxt is
always taken. This is because if T [m‖r] is already
de�ned, then r would already be in R, but we are
sampling r to avoid everything in R. We can there-
fore simply execute the body of the if-statement
without actually checking the condition.

S := ∅; R := ∅
T ,Tinv := empty assoc. arrays

ctxt(m):
r ← {0, 1}λ \ R
c ← {0, 1}blen

// T [m‖r] := c; Tinv[c] :=m‖r
R := R ∪ {r }
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

if Tinv[c] unde�ned:
m‖r ← {0, 1}blen

Tinv[c] :=m‖r ; T [m‖r] := c
R := R ∪ {r }

return �rst n bits of Tinv[c]

In the previous hybrid, no line of code ever reads
from T ; they only write to T . It has no e�ect to re-
move a line that assigns to T , so we do so in ctxt.

ctxt also writes to Tinv[c], but for a value c ∈ S.
The only line that reads from Tinv is in decrypt,
but the �rst line of decrypt prevents it from be-
ing reached for such a c ∈ S. It therefore has no
e�ect to remove this assignment to Tinv.

175

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

S := ∅; // R := ∅
T ,Tinv := empty assoc. arrays

ctxt(m):
// r ← {0, 1}λ \ R
c ← {0, 1}blen

// R := R ∪ {r }
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

if Tinv[c] unde�ned:
m‖r ← {0, 1}blen

Tinv[c] :=m‖r ; T [m‖r] := c
// R := R ∪ {r }

return �rst n bits of Tinv[c]

Consider all the ways that R is used in the previous
hybrid. The �rst line of ctxt usesR to sample r , but
then r is subsequently used only to further update
R and nowhere else. Both subroutines use R only
to update the value of R. It has no e�ect to simply
remove all lines that refer to variable R.

S := ∅
T ,Tinv := empty assoc. arrays

ctxt(m):
c ← {0, 1}blen

S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

if Tinv[c] unde�ned:
m‖r ← {0, 1}blen \Tinv.values

Tinv[c] :=m‖r ; T [m‖r] := c
return �rst n bits of Tinv[c]

We have applied Lemma 4.12 to the sampling step
in decrypt. The standard intermediate steps have
been skipped. Now the second if-statement in
decrypt exactly matches Lsprp-rand.

LΣ
cca$-rand

:

LΣ
cca$-rand

k ← {0, 1}λ

S := ∅

ctxt(m):
c ← {0, 1}blen

S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return �rst n bits of F−1(k, c)

We have applied the strong PRP security of F to
replace Lsprp-rand with Lsprp-real. The standard in-
termediate steps have been skipped. The result is
Lcca$-rand.

176

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

We showed that LΣ
cca$-real

∼∼∼ L
Σ
cca$-rand

, so the scheme has CCA$ security. �

Exercises

9.1. There is nothing particularly bad about padding schemes. They are only a target because
padding is a commonly used structure in plaintexts that is veri�ed at the time of decryp-
tion.
Anull character is simply the byte 00 . We say that a string isproperly null terminated
if its last character is null, but no other characters are null. Suppose you have access to
the following oracle:

nulltermoracle(c):
m := Dec(k, c)
ifm is properly null terminated:

return true

else return false

Suppose you are given a CTR-mode encryption of an unknown (but properly null termi-
nated) plaintextm∗ under unknown key k . Suppose that plaintexts of arbitrary length are
supported by truncating the CTR-stream to the appropriate length before xoring with the
plaintext.
Show how to completely recoverm∗ in the presence of this null-termination oracle.

9.2. Show how to completely recover the plaintext of an arbitrary CBC-mode ciphertext in the
presence of the following oracle:

nulloracle(c):
m := Dec(k, c)
ifm contains a null character:

return true

else return false

Assume that the victim ciphertext encodes a plaintext that does not use any padding (its
plaintext is an exact multiple of the blocklength).

9.3. Show how to perform a padding oracle attack, to decrypt arbitrary messages that use
PKCS#7 padding (where all padded strings end with 01 , 02 02 , 03 03 03 , etc.).

9.4. Sometimes encryption is as good as decryption, to an adversary.

(a) Suppose you have access to the following encryption oracle, where s is a secret that
is consistent across all calls:

ecboracle(m):
// k , s are secret
return ECB.Enc(k,m‖s)

177

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

Yes, this question is referring to the awful ECB encryption mode (Construction 8.1).
Describe an attack that e�ciently recovers all of s using access to ecboracle. Assume
that if the length ofm‖s is not a multiple of the blocklength, then ECB mode will pad
it with null bytes.

Hint:

Byvaryingthelengthofm,youcancontrolwheretheblock-divisionboundariesareins.

(b) Now suppose you have access to a CBC encryption oracle, where you can control the
IV that is used:

cbcoracle(iv,m):
// k , s are secret
return CBC.Enc(k, iv,m‖s)

Describe an attack that e�ciently recovers all of s using access to cbcoracle. As
above, assume that m‖s is padded to a multiple of the blocklength in some way. It is
possible to carry out the attack no matter what the padding method is, as long as the
padding method is known to the adversary.

? 9.5. Show how a padding oracle (for CBC-mode encryption with X.923 padding) can be used
to generate a valid encryption of any chosen plaintext, under the same (secret) key
that the padding oracle uses. In this problem, you are not given access to an encryption
subroutine, or any valid ciphertexts — only the padding oracle subroutine.

9.6. Prove formally that CCA$ security implies CCA security.

9.7. Let Σ be an encryption scheme with message space {0, 1}n and de�ne Σ2 to be the follow-
ing encryption scheme with message space {0, 1}2n :

KeyGen:
k ← Σ.KeyGen

return k

Enc(k,m):
c1 := Σ.Enc(k,mle�)

c2 := Σ.Enc(k,mright)

return (c1, c2)

Dec(k, (c1, c2)):
m1 := Σ.Dec(k, c1)
m2 := Σ.Dec(k, c2)
if err ∈ {m1,m2}:

return err

else returnm1‖m2

(a) Prove that if Σ has CPA security, then so does Σ2.

(b) Show that even if Σ has CCA security, Σ2 does not. Describe a successful distinguisher
and compute its distinguishing advantage.

9.8. Show that the following block cipher modes do not have CCA security. For each one,
describe a successful distinguisher and compute its distinguishing advantage.

(a) OFB mode (b) CBC mode (c) CTR mode

9.9. Show that none of the schemes in Exercise 7.7 have CCA security. For each one, describe
a successful distinguisher and compute its distinguishing advantage.

178

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

9.10. Let F be a secure block cipher with blocklength λ. Below is an encryption scheme for
plaintextsM = {0, 1}λ . Formally describe its decryption algorithm and show that it does
not have CCA security.

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m):
r ← {0, 1}λ

c1 := F (k, r)
c2 := r ⊕ F (k,m)
return (c1, c2)

9.11. Let F be a secure block cipher with blocklength λ. Below is an encryption scheme for
plaintextsM = {0, 1}λ . Formally describe its decryption algorithm and show that it does
not have CCA security.

KeyGen:
k1 ← {0, 1}

λ

k2 ← {0, 1}
λ

return (k1,k2)

Enc

(
(k1,k2),m

)
:

r ← {0, 1}λ

c1 := F (k1, r)
c2 := F (k1, r ⊕m ⊕ k2)
return (c1, c2)

9.12. Alice has the following idea for a CCA-secure encryption. To encrypt a single plaintext
block m, do normal CBC encryption of 0blen‖m. To decrypt, do normal CBC decryption
but give an error if the �rst plaintext block is not all zeroes. Her reasoning is:

I The ciphertext has 3 blocks (including the IV). If an adversary tampers with the IV
or the middle block of a ciphertext, then the �rst plaintext block will no longer be all
zeroes and the ciphertext is rejected.

I If an adversary tampers with the last block of a ciphertext, then the CBC decryption
results in 0blen‖m′ where m′ is unpredictable from the adversary’s point of view.
Hence the result of decryption (m′) will leak no information about the originalm.

More formally, let CBC denote the encryption scheme obtained by using a secure PRF in
CBC mode. Below we de�ne an encryption scheme Σ′ with message space {0, 1}blen and
ciphertext space {0, 1}3blen:

Σ′.KeyGen:
k ← CBC.KeyGen

return k

Σ′.Enc(k,m):
return CBC.Enc(k, 0blen‖m)

Σ′.Dec(k, c):
m1‖m2 := CBC.Dec(k, c)
ifm1 = 0blen:

returnm2
else return err

Show that Σ′ does not have CCA security. Describe a distinguisher and compute its dis-
tinguishing advantage. What part of Alice’s reasoning was not quite right?

Hint: Obtainaciphertextc=c0‖c1‖c2andanotherciphertextc
′
=c
′
0‖c
′
1‖c
′
2,bothwithknownplaintexts.

Askthelibrarytodecryptc0‖c1‖c
′
2.

179

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

9.13. CBC and OFB modes are malleable in very di�erent ways. For that reason, Mallory claims
that encrypting a plaintext (independently) with both modes results in CCA security, when
the Dec algorithm rejects ciphertexts whose OFB and CBC plaintexts don’t match. The
reasoning is that it will be hard to tamper with both ciphertexts in a way that achieves the
same e�ect on the plaintext.

Let CBC denote the encryption scheme obtained by using a secure PRF in CBC mode. Let
OFB denote the encryption scheme obtained by using a secure PRF in OFB mode. Below
we de�ne an encryption scheme Σ′:

Σ′.KeyGen:
kcbc ← CBC.KeyGen

kofb ← OFB.KeyGen

return (kcbc,kofb)

Σ′.Enc((kcbc,kofb),m):
c := CBC.Enc(kcbc,m)
c ′ := OFB.Enc(kofb,m)
return (c, c ′)

Σ′.Dec((kcbc,kofb), (c, c
′)):

m := CBC.Dec(kcbc, c)
m′ := OFB.Dec(kofb, c

′)

ifm =m′:
returnm

else return err

Show that Σ′ does not have CCA security. Describe a distinguisher and compute its dis-
tinguishing advantage.

9.14. This problem is a generalization of the previous one. Let Σ1 and Σ2 be two (possibly di�er-
ent) encryption schemes with the same message spaceM. Below we de�ne an encryption
scheme Σ′:

Σ′.KeyGen:
k1 ← Σ1.KeyGen

k2 ← Σ2.KeyGen

return (k1,k2)

Σ′.Enc((k1,k2),m):
c1 := Σ1.Enc(k1,m)
c2 := Σ2.Enc(k2,m)
return (c1, c2)

Σ′.Dec((k1,k2), (c1, c2)):
m1 := Σ1.Dec(k1, c1)
m2 := Σ2.Dec(k2, c2)
ifm1 =m2:

returnm1
else return err

Show that Σ′ does not have CCA security, even if both Σ1 and Σ2 have CCA (yes, CCA)
security. Describe a distinguisher and compute its distinguishing advantage.

9.15. Consider any padding scheme consisting of subroutines pad (which adds valid padding
to its argument) and validpad (which checks its argument for valid padding and returns
true/false). Assume that validpad(pad(x)) = true for all strings x .

Show that if an encryption scheme Σ has CCA security, then the following two libraries
are indistinguishable:

180

Draft: January 3, 2021 CHAPTER 9. CHOSEN CIPHERTEXT ATTACKS

LΣ
pad-L

k ← Σ.KeyGen

eavesdrop(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

return Σ.Enc(k, pad(mL))

paddingoracle(c ∈ Σ.C):
return validpad(Σ.Dec(k, c))

LΣ
pad-R

k ← Σ.KeyGen

eavesdrop(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

return Σ.Enc(k, pad(mR))

paddingoracle(c ∈ Σ.C):
return validpad(Σ.Dec(k, c))

That is, a CCA-secure encryption scheme hides underlying plaintexts in the presence of
padding-oracle attacks.

Note: The distinguisher can even send a ciphertext c obtained from eavesdrop as an ar-
gument to paddingoracle. Your proof should somehow account for this when reducing
to the CCA security of Σ.

9.16. Show that an encryption scheme Σ has CCA$ security if and only if the following two
libraries are indistinguishable:

LΣ
le�

k ← Σ.KeyGen

eavesdrop(m ∈ Σ.M):
return Σ.Enc(k,m)

decrypt(c ∈ Σ.C):
return Σ.Dec(k, c)

LΣ
right

k ← Σ.KeyGen

D := empty assoc. array

eavesdrop(m ∈ Σ.M):
c ← Σ.C(|m |)
D[c] :=m
return c

decrypt(c ∈ Σ.C):
if D[c] exists: return D[c]
else: return Σ.Dec(k, c)

Note: In Lle�, the adversary can obtain the decryption of any ciphertext via decrypt. In
Lright, the decrypt subroutine is “patched” (via D) to give reasonable answers to cipher-
texts generated in eavesdrop.

181

10 Message Authentication Codes

The challenge of CCA-secure encryption is dealing with ciphertexts that were generated
by an adversary. Imagine there was a way to “certify” that a ciphertext was not adversar-
ially generated — i.e., it was generated by someone who knows the secret key. We could
include such a certi�cation in the ciphertext, and the Dec algorithm could raise an error
if it asked to decrypt something with invalid certi�cation.

What we are asking for is not to hide the ciphertext but to authenticate it: to ensure
that it was generated by someone who knows the secret key. The tool for the job is called
a message authentication code. One of the most important applications of a message
authentication code is to transform a CPA-secure encryption scheme into a CCA-secure
one.

As you read this chapter, keep in mind that privacy and authentication are indeed
di�erent properties. It is possible to have one or the other or indeed both simultaneously.
But one does not imply the other, and it is crucial to think about them separately.

10.1 Definition

A MAC is like a signature that can be added to a piece of data, which certi�es that someone
who knows the secret key attests to this particular data. In cryptography, the term “signa-
ture” means something speci�c, and slightly di�erent than a MAC. Instead of calling the
output of a MAC algorithm a signature, we call it a “tag” (or, confusingly, just “a MAC”).

Our security requirement for a MAC scheme is that only someone with the secret key
can generate a valid tag. To check whether a tag is valid, you just recompute the tag
for a given message and see whether it matches the claimed tag. This implies that both
generating and verifying a MAC tag requires the secret key.

Definition 10.1

(MAC scheme)

A message authentication code (MAC) scheme for message spaceM consists of the fol-
lowing algorithms:

I KeyGen: samples a key.

I MAC: takes a key k and message m ∈ M as input, and outputs a tag t . The MAC

algorithm is deterministic.

How to Think About Authenticity Properties

Every security de�nition we’ve seen so far is about hiding information, so how do we
make a formal de�nition about authenticity?

Before we see the security de�nition for MACs, let’s start with a much simpler (poten-
tially obvious?) statement: “an adversary should not be able to guess a uniformly chosen
λ-bit value.” We can formalize this idea with the following two libraries:

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

Lle�

r ← {0, 1}λ

guess(д):

return д ?
= r

Lright

guess(д):
return false

The left library allows the calling program to attempt to guess a uniformly chosen “target”
string. The right library doesn’t even bother to verify the calling program’s guess — in fact
it doesn’t even bother to sample a random target string!

The guess subroutines of these libraries give the same output on nearly all inputs.
There is only one input r on which they disagree. If a calling program can manage to �nd
the value r , then it can easily distinguish the libraries. Therefore, by saying that these
libraries are indistinguishable, we are really saying that it’s hard for an adversary to
�nd/generate this special value! That’s the kind of property we want to express.

Indeed, in this case, an adversary who makes q queries to the guess subroutine
achieves an advantage of at most q/2λ . For polynomial-time adversaries, this is a neg-
ligible advantage (since q is a polynomial function of λ).

More generally, suppose we have two libraries, and a subroutine in one library checks
some condition (and could return either true or false), while in the other library this
subroutine always returns false. If the two libraries are indistinguishable, the calling
program can’t tell whether the library is actually checking the condition or always saying
false. This means it must be very hard to �nd an input for which the “correct” answer is
true.

The MAC Security Definition

We want to say that only someone who knows the secret key can come up with valid MAC
tags. In other words, the adversary cannot come up with valid MAC tags.

Actually, that property is not quite enough to be useful. A more useful property is:
even if the adversary knows valid MAC tags corresponding to various messages, she cannot
produce a valid MAC tag for a di�erent message. We call it a forgery if the adversary can
produce a “new” valid MAC tag.

To translate this security property to a formal de�nition, we de�ne two libraries that
allow the adversary to request MAC tags on chosen messages. The libraries also provide
a mechanism to let the adversary check whether it has successfully found a forgery (since
there is no way of checking this property without the secret key). One library will actually
perform the check, and the other library will simply assume that forgeries are impossible.
The two libraries are di�erent only in how they behave when the adversary calls this veri-
�cation subroutine on a forgery. By demanding that the two libraries be indistinguishable,
we are actually demanding that it is di�cult for the calling program to generate a forgery.

Definition 10.2

(MAC security)

Let Σ be a MAC scheme. We say that Σ is a secure MAC if LΣ
mac-real

∼∼∼ L
Σ
mac-fake

, where:

183

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

LΣ
mac-real

k ← Σ.KeyGen

gettag(m ∈ Σ.M):
return Σ.MAC(k,m)

checktag(m ∈ Σ.M, t):

return t
?
= Σ.MAC(k,m)

LΣ
mac-fake

k ← Σ.KeyGen

T := ∅

gettag(m ∈ Σ.M):
t := Σ.MAC(k,m)

T := T ∪ {(m, t)}
return t

checktag(m ∈ Σ.M, t):

return (m, t)
?
∈ T

Discussion:

I The adversary can see valid tags of chosen messages, from the gettag subroutine.
However, these tags shouldn’t count as a successful forgery. The way this is enforced
is in the checktag subroutine of Lmac-fake — instead of always responding false, it
gives the correct answer (true) for any tags generated by gettag.

In order for the two libraries to behave di�erently, the adversary must call checktag
on input (m, t) such that m was never used as an argument to gettag (so that
Lmac-fake responds false) but where the tag is actually correct (so that Lmac-real

responds true).

I The adversary can successfully distinguish if it �nds any forgery — a valid MAC
tag of any “fresh” message. The de�nition doesn’t care whether it’s the tag of any
particular meaningful message.

MAC Applications

Although MACs are less embedded in public awareness than encryption, they are ex-
tremely useful. A frequent application of MACs is to store some information in an un-
trusted place, where we don’t intend to hide the data, only ensure that the data is not
changed.

I A browser cookie is a small piece of data that a webserver stores in a user’s web
browser. The browser presents the cookie data to the server upon each request.

Imagine a webserver that stores a cookie when a user logs in, containing that user’s
account name. What stops an attacker from modifying their cookie to contain a
di�erent user’s account name? Adding a MAC tag of the cookie data (using a key
known only to the server) ensures that such an attack will not succeed. The server
can trust any cookie data whose MAC tag is correct.

I When Alice initiates a network connection to Bob, they must perform a TCP hand-
shake:

184

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

1. Alice sends a special SYN packet containing her initial sequence number A. In
TCP, all packets from Alice to Bob include a sequence number, which helps the
parties detect when packets are missing or out of order. It is important that
the initial sequence number be random, to prevent other parties from injecting
false packets.

2. Bob sends a special SYN+ACK packet containingA+1 (to acknowledge Alice’s
A value) and the initial sequence number B for his packets.

3. Alice sends a special ACK packet containing B + 1, and then the connection is
established.

When Bob is waiting for step 3, the connection is considered “half-open.” While
waiting, Bob must remember B so that he can compare to the B + 1 that Alice is
supposed to send in her �nal ACK. Typically the operating system allocates only a
very limited amount of resources for these half-open connections.
In the past, it was possible to perform a denial of service attack by starting a huge
number of TCP connections with a server, but never sending the �nal ACK packet.
The server’s queue for half-open connections �lls up, which prevents other legiti-
mate connections from starting.
A clever backwards-compatible solution to this problem is called SYN cookies. The
idea is to let Bob choose his initial sequence number B to be a MAC of the client’s
IP address, port number, and some other values. Now there is nothing to store for
half-open connections. When Alice sends the �nal ACK of the handshake, Bob can
recompute the initial sequence number from his MAC key.

These are all cases where the person who generates the MAC is the same person who later
veri�es the MAC. You can think of this person as choosing not to store some information,
but rather leaving the information with someone else as a “note to self.”

There are other useful settings where one party generates a MAC while the other
veri�es.

I In two-factor authentication, a user logs into a service using something they know
(e.g., a password) and something they have (e.g., a mobile phone). The most common
two-factor authentication mechanism is called timed one-time passwords (TOTP).
When you (as a user) enable two-factor authentication, you generate a secret key
k and store it both on your phone and with the service provider. When you wish
to log in, you open a simple app on your phone which computes p = MAC(k,T),
whereT is the current date + time (usually rounded to the nearest 30 seconds). The
value p is the “timed one-time password.” You then log into the service using your
usual (long-term) password and the one-time password p. The service provider has
k and also knows the current time, so can verify the MAC p.
From the service provider’s point of view, the only other place k exists is in the
phone of this particular user. Intuitively, the only way to generate a valid one-time
password at timeT is to be in posession of this phone at timeT . Even if an attacker
sees both your long-term and one-time password over your shoulder, this does not
help him gain access to your account in the future (well, not after 30 seconds in the
future).

185

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

10.2? A PRF is a MAC

The de�nition of a PRF says (more or less) that even if you’ve seen the output of the
PRF on several chosen inputs, all other outputs look independently & uniformly random.
Furthermore, uniformly chosen values are hard to guess, as long as they are su�ciently
long (e.g., λ bits).

In other words, after seeing some outputs of a PRF, any other PRF output will be hard
to guess. This is exactly the intuitive property we require from a MAC. And indeed, we
will prove in this section that a PRF is a secure MAC. While the claim makes intuitive
sense, proving it formally is a little tedious. This is due to the fact that that in the MAC
security game, the adversary can make many veri�cation queries checktag(m, t) before
asking to see the correct MAC ofm. Dealing with this event is the source of all the technical
di�culty in the proof.

We start with a technical claim that captures the idea that “if you can blindly guess
at uniformly chosen values and can also ask to see the values, then it is hard to guess a
random value before you have seen it.”

Claim 10.3 The following two libraries are indistinguishable:

Lguess-L

T := empty assoc. array

guess(m ∈ {0, 1}in,д ∈ {0, 1}λ):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return д ?
= T [m]

reveal(m ∈ {0, 1}in):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

Lguess-R

T := empty assoc. array

guess(m ∈ {0, 1}in,д ∈ {0, 1}λ):

// returns false if T [m] unde�ned

return д ?
= T [m]

reveal(m ∈ {0, 1}in):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

Both libraries maintain an associative arrayT whose values are sampled uniformly the �rst
time they are needed. Calling programs can try to guess these values via the guess subrou-
tine, or simply learn them via reveal. Note that the calling program can call guess(m, ·)
both before and after calling reveal(m).

Intuitively, since the values inT are λ bits long, it should be hard to guessT [m] before
calling reveal(m). That is exactly what we formalize in Lguess-R. In fact, this library
doesn’t bother to even choose T [m] until reveal(m) is called. All calls to guess(m, ·)
made before the �rst call to reveal(m) will return false.

Proof Let q be the number of queries that the calling program makes to guess. We will show
that the libraries are indistinguishable with a hybrid sequence of the form:

Lguess-L ≡ Lhyb-0 ∼∼∼ Lhyb-1 ∼∼∼ · · · ∼∼∼ Lhyb-q ≡ Lguess-R

186

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

The hth hybrid library in the sequence is de�ned as:

Lhyb-h

count := 0
T := empty assoc. array

guess(m,д):
count := count + 1
if T [m] unde�ned and count > h :
T [m] ← {0, 1}λ

return д ?
= T [m]

// returns false if T [m] unde�ned

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

This hybrid library behaves like Lguess-R for the �rst h queries to guess, in the sense
that it will always just return falsewhenT [m] is unde�ned. After h queries, it will behave
like Lguess-L by actually sampling T [m] in these cases.

In Lhyb-0, the clause “count > 0 ” is always true so this clause can be removed from
the if-condition. This modi�cation results in Lguess-L, so we have Lguess-L ≡ Lhyb-0.

In Lhyb-q , the clause “count > q ” in the if-statement is always false since the call-
ing program makes only q queries. Removing the unreachable if-statement it results in
Lguess-R, so we have Lguess-R ≡ Lhyb-q .

It remains to show that Lhyb-h
∼∼∼ Lhyb-(h + 1) for all h. We can do so by rewriting these

two libraries as follows:

Lhyb-h

count := 0
T := empty assoc. array

guess(m,д):
count := count + 1
if T [m] unde�ned and count > h :
T [m] ← {0, 1}λ

if д = T [m] and count = h + 1:
bad := 1

return д ?
= T [m]

// returns false if T [m] unde�ned

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

Lhyb-(h + 1)

count := 0
T := empty assoc. array

guess(m,д):
count := count + 1
if T [m] unde�ned and count > h :
T [m] ← {0, 1}λ

if д = T [m] and count = h + 1:
bad := 1; return false

return д ?
= T [m]

// returns false if T [m] unde�ned

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

187

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

The library on the left is equivalent to Lhyb-h since the only change is the highlighted
lines, which don’t actually a�ect anything. In the library on the right, ifT [m] is unde�ned
during the �rst h + 1 calls to guess, the subroutine will return false (either by avoiding
the if-statement altogether or by triggering the highlighted lines). This matches the be-
havior ofLhyb-(h + 1), except that the library shown above samples the valueT [m]which in
Lhyb-(h + 1) would not be sampled until the next call of the form guess(m, ·) or reveal(m).
But the method of sampling is the same, only the timing is di�erent. This di�erence has
no e�ect on the calling program.

So the two libraries above are indeed equivalent to Lhyb-h and Lhyb-(h + 1). They di�er
only in code that is reachable when bad = 1. From Lemma 4.8, we know that these two
libraries are indistinguishable if Pr[bad = 1] is negligible. In these libraries there is only
one chance to set bad = 1, and that is by guessing/predicting uniformT [m] on the (h+1)th
call to guess. This happens with probability 1/2λ , which is indeed negligible.

This shows that Lhyb-h
∼∼∼ Lhyb-(h + 1), and completes the proof. �

We now return to the problem of proving that a PRF is a MAC.

Claim 10.4 Let F be a secure PRF with input length in and output length out = λ. Then the scheme
MAC(k,m) = F (k,m) is a secure MAC for message space {0, 1}in.

Proof We show that LF
mac-real

∼∼∼ L
F
mac-fake

, using a standard sequence of hybrids.

LF
mac-real

k ← {0, 1}λ

gettag(m):
return F (k,m)

checktag(m, t):

return t
?
= F (k,m)

The starting point is the
Lmac-real library, with the
details of this MAC scheme
�lled in.

gettag(m):
return lookup(m)

checktag(m, t):

return t
?
= lookup(m)

�

LF
prf-real

k ← {0, 1}λ

lookup(x):
return F (k,x)

We have factored out the PRF
operations in terms of the li-
brary Lprf-real from the PRF se-
curity de�nition.

gettag(m):
return lookup(m)

checktag(m, t):

return t
?
= lookup(m)

�

LF
prf-rand

T := empty assoc. array

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}out

return T [x]

We have applied the PRF-
security of F and replaced
Lprf-real with Lprf-rand.

188

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

gettag(m):
return reveal(m)

checktag(m, t):
return guess(m, t)

�

Lguess-L

T := empty assoc. array

guess(m,д):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return д ?
= T [m]

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

We can express the previous
hybrid in terms of the Lguess-L

library from Claim 10.3. The
change has no e�ect on the
calling program.

gettag(m):
return reveal(m)

checktag(m, t):
return guess(m, t)

�

Lguess-R

T := empty assoc. array

guess(m,д):

return д ?
= T [m]

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

We have applied Claim 10.3 to
replace Lguess-L with Lguess-R.
This involves simply removing
the if-statement from guess.
As a result, guess(m,д) will re-
turn false ifT [m] is unde�ned.

T := ∅

gettag(m):
t := reveal(m)
T := T ∪ {(m, t)}
return t

checktag(m, t):
return guess(m, t)

�

Lguess-R

T := empty assoc. array

guess(m,д):

return д ?
= T [m]

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

Extra bookkeeping informa-
tion is added, but not used
anywhere. There is no e�ect
on the calling program.

Consider the hybrid experiment above, and suppose the calling program makes a call to
checktag(m, t). There are two cases:

I Case 1: there was a previous call to gettag(m). In this case, the valueT [m] is de�ned
in Lguess-R and (m,T [m]) already exists in T . In this case, the result of guess(m, t)
(and hence, of checktag(m, t)) will be t ?

= T [m].

I Case 2: there was no previous call to gettag(m). Then there is no value of the form
(m,?) in T . Furthermore,T [m] is unde�ned in Lguess-R. The call to guess(m, t) will

189

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

return false, and so will the call to checktag(m, t) that we consider.

In both cases, the result of checktag(m, t) is true if and only if (m, t) ∈ T .

T := ∅

gettag(m):
t := reveal(m)
T := T ∪ {(m, t)}
return t

checktag(m, t):

return (m, t)
?
∈ T

�

Lguess-R

T := empty assoc. array

guess(m,д):

return д ?
= T [m]

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

We have modi�ed checktag ac-
cording to the discussion above.

T := ∅

gettag(m):
t := lookup (m)
T := T ∪ {(m, t)}
return t

checktag(m, t):

return (m, t)
?
∈ T

�

LF
prf-rand

T := empty assoc. array

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}out

return T [x]

In the previous hybrid, the guess
subroutine is never called. Remov-
ing that unused subroutine and re-
naming reveal to lookup results in
theLprf-ideal library from the PRF se-
curity de�nition.

T := ∅

gettag(m):
t := lookup(m)
T := T ∪ {(m, t)}
return t

checktag(m, t):

return (m, t)
?
∈ T

�

LF
prf-real

k ← {0, 1}λ

lookup(x):
return F (k,x)

We have applied the PRF security
of F again, replacing Lprf-ideal with
Lprf-real.

Inlining Lprf-real in the �nal hybrid, we see that the result is exactly LF
mac-fake

. Hence, we
have shown that LF

mac-real

∼∼∼ L
F
mac-fake

, which completes the proof. �

Discussion

If PRFs areMACs, why dowe even need a de�nition forMACs? The simplest answer
to this question is that the concepts of PRF and MAC are indeed di�erent:

I Not every PRF is a MAC. Only su�ciently long random values are hard to
guess, so only PRFs with long outputs (out > λ) are MACs. It is perfectly reasonable
to consider a PRF with short outputs.

190

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

I Not every MAC is a PRF. Just like not every encryption scheme has pseudorandom
ciphertexts, not every MAC scheme has pseudorandom tags. Imagine taking a se-
cure MAC scheme and modifying it as MAC

′(k,m) = MAC(k,m)‖0λ . Adding 0s to
every tag prevents the tags from looking pseudorandom, but does not make the tags
any easier to guess. Something doesn’t have to be uniformly random in order
to be hard to guess.

It is true that in the vast majority of cases we will encounter MAC schemes with random
tags, and PRFs with long outputs (out > λ). But it is good practice to know whether you
really need something that is pseudorandom or hard to guess.

10.3 MACs for Long Messages

Using a PRF as a MAC is useful only for short, �xed-length messages, since most PRFs that
exist in practice are limited to such inputs. Can we somehow extend a PRF to construct a
MAC scheme for long messages, similar to how we used block cipher modes to construct
encryption for long messages?

How NOT to do it

To understand the challenges of constructing a MAC for long messages, we �rst explore
some approaches that don’t work. The things that can go wrong in an insecure MAC are
quite di�erent in character to the things that can go wrong in a block cipher mode, so pay
attention closely!

Example Let F be a PRF with in = out = λ. Below is a MAC approach for messages of length 2λ. It is
inspired by ECB mode, so you know it’s going to be a disaster:

ECBMAC(k,m1‖m2):
t1 := F (k,m1)

t2 := F (k,m2)

return t1‖t2

One problemwith this approach is that, although the PRF authenticates each blockm1,m2
individually, it does nothing to authenticate thatm1 is the �rst block butm2 is the second one.
Translating this observation into an attack, an adversary can ask for the MAC tag ofm1‖m2
and then predict/forge the tag form2‖m1:

A:

t1‖t2 := gettag(0λ ‖1λ)
return checktag(1λ ‖0λ , t2‖t1)

WhenA is linked to Lmac-real, it always return true, since we can tell that t2‖t1 is indeed the
valid tag for 1λ ‖0λ . When A is linked to Lmac-fake, it always return false, since the calling
program never called gettag with input 1λ ‖0λ . Hence, A distinguishes the libraries with
advantage 1.

191

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

This silly MAC construction treats bothm1 andm2 identically, and an obvious way to
try to �x the problem is to treat the di�erent blocks di�erently somehow:

Example Let F be a PRF with in = λ + 1 and out = λ. Below is another MAC approach for messages of
length 2λ:

ECB++MAC(k,m1‖m2):
t1 := F (k, 0‖m1)

t2 := F (k, 1‖m2)

return t1‖t2

This MAC construction does better, as it treats the two message blocks m1 and m2 dif-
ferently. Certainly the previous attack of swapping the order of m1 and m2 doesn’t work
anymore. (Can you see why?)

The construction authenticates (in some sense) the fact thatm1 is the �rst message block,
and m2 is the second block. However, this construction doesn’t authenticate the fact that
this particular m1 and m2 belong together. More concretely, we can “mix and match”
blocks of the tag corresponding to di�erent messages:

A:

t1‖t2 := gettag(02λ)
t ′1‖t

′
2 := gettag(12λ)

return checktag(0λ ‖1λ , t1‖t ′2)

In this attack, we combine the t1 block from the �rst tag and the t2 block from the second tag.

We are starting to see the challenges involved in constructing a MAC scheme for long
messages. A secure MAC should authenticate each message block, the order of the mes-
sage blocks, and the fact that these particular message blocks are appearing in a single mes-
sage. In short, it must authenticate the entirety of the message.

Think about how authentication is signi�cantly di�erent than privacy/hiding in this
respect. At least for CPA security, we can hide an entire plaintext by hiding each in-
dividual piece of the plaintext separately (encrypting it with a CPA-secure encryption).
Authentication is fundamentally di�erent.

How to do it: CBC-MAC

We have seen some insecure ways to construct a MAC for longer messages. Now let’s see
a secure way. A common approach to constructing a MAC for long messages involves the
CBC block cipher mode.

Construction 10.5

(CBC-MAC)

Let F be a PRF with in = out = λ. CBC-MAC refers to the following MAC scheme:

192

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

cbcmacF (k,m1 · · ·m`):
t := 0λ

for i = 1 to `:
t := F (k,mi ⊕ t)

return t

Fk Fk Fk

⊕ ⊕

m1 m2 m`

t

· · ·

· · ·

Unlike CBC encryption, CBC-MAC uses no initialization vector (or, you can think of
it as using the all-zeroes IV), and it outputs only the last block.

Theorem 10.6 If F is a secure PRF with in = out = λ, then for any �xed `, CBC-MAC is a secure MAC when
used with message spaceM = {0, 1}λ` .

Pay close attention to the security statement. It says that if you only ever authenticate
4-block messages, CBC-MAC is secure. If you only ever authenticate 24-block messages,
CBC-MAC is secure. However, if you want to authenticate both 4-block and 24-block
messages (i.e., under the same key), then CBC-MAC is not secure. In particular, seeing
the CBC-MAC of several 4-block messages allows an attacker to generate a forgery of a
24-block message. The exercises explore this property.

More Robust CBC-MAC

If CBC-MAC is so fragile, is there a way to extend it to work for messages of mixed lengths?
One approach is called ECBC-MAC, and is shown below. It works by treating the last
block di�erently — speci�cally, it uses an independent PRF key for the last block in the
CBC chain.

Construction 10.7

(ECBC-MAC)

Let F be a PRF with in = out = λ. ECBC-MAC refers to the following scheme:

ecbcmacF
(
(k1,k2),m1 · · ·m`

)
:

t := 0λ

for i = 1 to ` − 1 :
t := F (k1 ,mi ⊕ t)

return F (k2 ,m` ⊕ t)

Fk1 Fk1 Fk2

⊕ ⊕

m1 m2 m`

t

· · ·

· · ·

Theorem 10.8 If F is a secure PRF with in = out = λ, then ECBC-MAC is a secure MAC for message space
M = ({0, 1}λ)∗.

In other words, ECBC-MAC is safe to use with messages of any length (that is a mul-
tiple of the block length).

193

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

To extend ECBC-MAC to messages of any length (not necessarily a multiple of the
block length), one can use a padding scheme as in the case of encryption.1

10.4 Encrypt-Then-MAC

Our motivation for studying MACs is that they seem useful in constructing a CCA-secure
encryption scheme. The idea is to add a MAC to a CPA-secure encryption scheme. The
decryption algorithm can raise an error if the MAC is invalid, thereby ensuring that
adversarially-generated (or adversarially-modi�ed) ciphertexts are not accepted. There
are several natural ways to combine a MAC and encryption scheme, but not all are secure!
(See the exercises.) The safest way is known as encrypt-then-MAC:

Construction 10.9

(Enc-then-MAC)

Let E denote an encryption scheme, and M denote a MAC scheme where E.C ⊆ M .M (i.e.,
the MAC scheme is capable of generating MACs of ciphertexts in the E scheme). Then let EtM
denote the encrypt-then-MAC construction given below:

K = E.K ×M .K
M = E.M
C = E.C ×M .T

KeyGen:
ke ← E.KeyGen

km ← M .KeyGen

return (ke,km)

Enc((ke,km),m):
c := E.Enc(ke,m)
t := M .MAC(km, c)
return (c, t)

Dec((ke,km), (c, t)):
if t , M .MAC(km, c):

return err

return E.Dec(ke, c)

Importantly, the scheme computes a MAC of the CPA ciphertext, and not of the plain-
text! The result is a CCA-secure encryption scheme:

Claim 10.10 If E has CPA security andM is a secure MAC, then EtM (Construction 10.9) has CCA security.

Proof As usual, we prove the claim with a sequence of hybrid libraries:

1Note that if the message is already a multiple of the block length, then padding adds an extra block.
There exist clever ways to avoid an extra padding block in the case of MACs, which we don’t discuss further.

194

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

LEtM
cca-L

ke ← E.KeyGen

km ← M .KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t ← M .MAC(km, c)

S := S ∪ { (c, t) }
return (c, t)

dec(c, t):
if (c, t) ∈ S return null
if t , M .MAC(km, c):

return err

return E.Dec(ke, c)

The starting point is LEtM
cca-L

, shown here with the details of
the encrypt-then-MAC construction highlighted. Our goal is
to eventually swap mL with mR . But the CPA security of E
should allow us to do just that, so what’s the catch?

To apply the CPA-security of E, we must factor out the rel-
evant call to E.Enc in terms of the CPA library LE

cpa-L
. This

means that ke becomes private to the Lcpa-L library. But ke

is also used in the last line of the library as E.Dec(ke, c). The
CPA security library for E provides no way to carry out such
E.Dec statements!

ke ← E.KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t := gettag(c)
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if not checktag(c, t) :

return err

return E.Dec(ke, c)

�

LM
mac-real

km ← M .KeyGen

gettag(c):
return M .MAC(km, c)

checktag(c, t):

return t
?
= M .MAC(km, c)

The operations of the
MAC scheme have been
factored out in terms of
LM

mac-real
. Notably, in the

dec subroutine the condi-
tion “t , M .MAC(km, c)”
has been replaced with
“not checktag(c, t).”

195

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

ke ← E.KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t := gettag(c)
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if not checktag(c, t):

return err

return E.Dec(ke, c)

�

LM
mac-fake

km ← M .KeyGen

T := ∅

gettag(c):
t := M .MAC(km, c)

T := T ∪ {(c, t)}
return t

checktag(c, t):
return (c, t)

?
∈ T

We have applied the security of the
MAC scheme, and replaced Lmac-real

with Lmac-fake.

ke ← E.KeyGen

km ← M .KeyGen

T := ∅
S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t := M .MAC(km, c)

T := T ∪ {(c, t)}
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if (c, t) < T :

return err

return E.Dec(ke, c)

We have inlined the Lmac-fake library. This library keeps track
of a set S of values for the purpose of the CCA interface, but
also a set T of values for the purposes of the MAC. However, it
is clear from the code of this library that S and T always have
the same contents.

Therefore, the two conditions “(c, t) ∈ S” and “(c, t) < T ” in the
dec subroutine are exhaustive! The �nal line of dec is unreach-
able. This hybrid highlights the intuitive idea that an adversary
can either query dec with a ciphertext generated by eavesdrop
(the (c, t) ∈ S case) — in which case the response is null — or
with a di�erent ciphertext — in which case the response will be
err since the MAC will not verify.

196

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

ke ← E.KeyGen

km ← M .KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t := M .MAC(km, c)
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if (c, t) < S :

return err

// unreachable

The unreachable statement has been removed and the redundant
variables S and T have been uni�ed. Note that this hybrid li-
brary never uses E.Dec, making it possible to express its use of
the E encryption scheme in terms of Lcpa-L.

km ← M .KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := cpa.eavesdrop(mL,mR)

t := M .MAC(km, c)
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if (c, t) < S:

return err

�

LE
cpa-L

ke ← E.KeyGen

cpa.eavesdrop(mL,mR):
c := E.Enc(ke,mL)

return c

The statements in-
volving the encryption
scheme E have been
factored out in terms
of Lcpa-L.

We have now reached the half-way point of the proof. The proof proceeds by re-
placing Lcpa-L with Lcpa-R (so that mR rather than mL is encrypted), applying the same
modi�cations as before (but in reverse order), to �nally arrive at Lcca-R. The repetitive
details have been omitted, but we mention that when listing the same steps in reverse,
the changes appear very bizarre indeed. For instance, we add an unreachable statement
to the dec subroutine; we create a redundant variable T whose contents are the same as
S; we mysteriously change one instance of S (the condition of the second if-statement in
dec) to refer to the other variable T . Of course, all of this is so that we can factor out the
statements referring to the MAC scheme (along with T) in terms of Lmac-fake and �nally

197

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

replace Lmac-fake with Lmac-real. �

Exercises

10.1. Consider the following MAC scheme, where F is a secure PRF with in = out = λ:

KeyGen:
k ← {0, 1}λ

return k

MAC(k,m1‖ · · · ‖m`): // eachmi is λ bits
m∗ := 0λ

for i = 1 to `:
m∗ :=m∗ ⊕mi

return F (k,m∗)

Show that the scheme is not a secure MAC. Describe a distinguisher and compute its
advantage.

10.2. Consider the following MAC scheme, where F is a secure PRF with in = out = λ:

KeyGen:
k ← {0, 1}λ

return k

MAC(k,m1‖ · · · ‖m`): // eachmi is λ bits
t := 0λ

for i = 1 to `:
t := t ⊕ F (k,mi)

return t

Show that the scheme is not a secure MAC. Describe a distinguisher and compute its
advantage.

10.3. Suppose MAC is a secure MAC algorithm. De�ne a new algorithm MAC
′(k,m) =

MAC(k,m)‖MAC(k,m). Prove that MAC
′ is also a secure MAC algorithm.

Note: MAC
′ cannot be a secure PRF. This shows that MAC security is di�erent than PRF

security.

10.4. Suppose MAC is a secure MAC scheme, whose outputs are ` bits long. Show that there is
an e�cient adversary that breaks MAC security (i.e., distinguishes the relevant libraries)
with advantage Θ(1/2`). This implies that MAC tags must be reasonably long in order to
be secure.

10.5. Suppose we use CBC-MAC with message spaceM = ({0, 1}λ)∗. In other words, a single
MAC key will be used on messages of any length that is an exact multiple of the block
length. Show that the result is not a secure MAC. Construct a distinguisher and compute
its advantage.

Hint: RequestaMAContwosingle-blockmessages,thenusetheresulttoforgetheMACofatwo-block
message.

? 10.6. Here is a di�erent way to extend CBC-MAC for mixed-length messages, when the length
of each message is known in advance. Assume that F is a secure PRF with in = out = λ.

newmacF (k,m1‖ · · · ‖m`):
k∗ := F (k, `)

return cbcmacF (k∗ ,m1‖ · · · ‖m`)

198

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

Prove that this scheme is a secure MAC for message spaceM = ({0, 1}λ)∗. You can use
the fact that CBC-MAC is secure for messages of �xed-length.

10.7. Let E be a CPA-secure encryption scheme andM be a secure MAC. Show that the following
encryption scheme (called encrypt & MAC) is not CCA-secure:

E&M .KeyGen:
ke ← E.KeyGen

km ← M .KeyGen

return (ke,km)

E&M .Enc((ke,km),m):
c := E.Enc(ke,m)
t := M .MAC(km,m)
return (c, t)

E&M .Dec((ke,km), (c, t)):
m := E.Dec(ke, c)
if t , M .MAC(km,m):

return err

returnm

Describe a distinguisher and compute its advantage.

10.8. Let E be a CPA-secure encryption scheme andM be a secure MAC. Show that the following
encryption scheme Σ (which I call encrypt-and-encrypted-MAC) is not CCA-secure:

Σ.KeyGen:
ke ← E.KeyGen

km ← M .KeyGen

return (ke,km)

Σ.Enc((ke,km),m):
c := E.Enc(ke,m)
t := M .MAC(km,m)
c ′← E.Enc(ke, t)
return (c, c ′)

Σ.Dec((ke,km), (c, c
′)):

m := E.Dec(ke, c)
t := E.Dec(ke, c

′)

if t , M .MAC(km,m):
return err

returnm

Describe a distinguisher and compute its advantage.

? 10.9. In Construction 7.4, we encrypt one plaintext block into two ciphertext blocks. Imagine
applying the Encrypt-then-MAC paradigm to this encryption scheme, but (erroneously)
computing a MAC of only the second ciphertext block.

In other words, let F be a PRF with in = out = λ, and let M be a MAC scheme for message
space {0, 1}λ . De�ne the following encryption scheme:

KeyGen:
ke ← {0, 1}

λ

km ← M .KeyGen

return (ke,km)

Enc((ke,km),m):
r ← {0, 1}λ

x := F (ke, r) ⊕m
t := M .MAC(km,x)
return (r ,x , t)

Dec((ke,km), (r ,x , t)):
if t , M .MAC(km,x):

return err

else return F (ke, r) ⊕ x

Show that the scheme does not have CCA security. Describe a successful attack and com-
pute its advantage.

Hint:

Suppose(r,x,t)and(r
′
,x
′
,t
′
)arevalidencryptions,andconsiderDec((ke,km),(r

′
,x,t))⊕x⊕x

′
.

10.10. When we combine di�erent cryptographic ingredients (e.g., combining a CPA-secure en-
cryption scheme with a MAC to obtain a CCA-secure scheme) we generally require the
two ingredients to use separate, independent keys. It would be more convenient if the entire
scheme just used a single λ-bit key.

(a) Suppose we are using Encrypt-then-MAC, where both the encryption scheme and
MAC have keys that are λ bits long. Refer to the proof of security of Claim 12.5 and

199

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

describewhere it breaks downwhen we modify Encrypt-then-MAC to use the same
key for both the encryption & MAC components:

KeyGen:

k ← {0, 1}λ

return k

Enc(k ,m):
c := E.Enc(k ,m)

t := M .MAC(k , c)
return (c, t)

Dec(k , (c, t)):
if t , M .MAC(k , c):

return err

return E.Dec(k , c)

(b) While Encrypt-then-MAC requires independent keys ke and km for the two compo-
nents, show that they can both be derived from a single key using a PRF.
In more detail, let F be a PRF with in = 1 and out = λ. Prove that the following
modi�ed Encrypt-then-MAC construction is CCA-secure:

KeyGen:

k∗ ← {0, 1}λ

return k∗

Enc(k∗ ,m):

ke
:= F (k∗, 0)

km
:= F (k∗, 1)

c := E.Enc(ke,m)
t := M .MAC(km, c)
return (c, t)

Dec(k∗ , (c, t)):

ke
:= F (k∗, 0)

km
:= F (k∗, 1)

if t , M .MAC(km, c):
return err

return E.Dec(ke, c)

You should not have to re-prove all the tedious steps of the Encrypt-then-MAC security
proof. Rather, you should apply the security of the PRF in order to reach the original
Encrypt-then-MAC construction, whose security we already proved (so you don’t have
to repeat).

200

11 Hash Functions

Suppose you share a huge �le with a friend, but you are not sure whether you both have
the same version of the �le. You could send your version of the �le to your friend and they
could compare to their version. Is there any way to check that involves less communication
than this?

Let’s call your version of the �le x (a string) and your friend’s version y. The goal
is to determine whether x = y. A natural approach is to agree on some deterministic
function H , compute H (x), and send it to your friend. Your friend can compute H (y) and,
since H is deterministic, compare the result to your H (x). In order for this method to be
fool-proof, we need H to have the property that di�erent inputs always map to di�erent
outputs — in other words, H must be injective (1-to-1). Unfortunately, if H is injective
and H : {0, 1}in → {0, 1}out is injective, then out > in. This means that sending H (x) is
no better/shorter than sending x itself!

Let us call a pair (x ,y) a collision in H if x , y and H (x) = H (y). An injective
function has no collisions. One common theme in cryptography is that you don’t always
need something to be impossible; it’s often enough for that thing to be just highly unlikely.
Instead of saying thatH should have no collisions, what if we just say that collisions should
be hard (for polynomial-time algorithms) to �nd? An H with this property will probably
be good enough for anything we care about. It might also be possible to construct such an
H with outputs that are shorter than its inputs!

What we have been describing is exactly a cryptographic hash function. A hash
function has long inputs and short outputs — typically H : {0, 1}∗ → {0, 1}n . Such an H
must necessarily have many collisions. The security property of a hash function is that it
is hard to �nd any such collision. Another good name for a hash function (which I just
made up, and no one else uses) would be a “pseudo-injective” function. Although it is not
injective, it behaves like one for our purposes.

11.1 Security Properties for Hash Functions

There are two common security properties of hash functions:

Collision resistance. It should be hard to compute any collision x , x ′ such thatH (x) =
H (x ′).

Second-preimage resistance. Given x , it should be hard to compute any collision in-
volving x . In other words, it should be hard to compute x ′ , x such that H (x) =
H (x ′).

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

Brute Force A�acks on Hash Functions

There is an important di�erence between collision resistance and second-preimage resis-
tance, which is re�ected in the di�culty of their respective brute force attacks. Suppose
H is a hash function whose outputs are n bits long. Let’s make a simplifying assumption
that for anym > n, the following distribution is roughly uniform over {0, 1}n :

x ← {0, 1}m

return H (x)

This is quite a realistic assumption for practical hash functions. If this were not true, then
H would introduce some bias towards some outputs and away from other outputs, which
would be perceived as suspicious. Also, as the output of H deviates farther from a uniform
distribution, it only makes �nding collisions easier.

Below are straight-forward brute-force attacks for collision resistance (left) and
second-preimage resistance (right):

Collision brute force:
Acr():

for i = 1, . . .:
xi ← {0, 1}

m

yi := H (xi)
if there is some j < i with xi , x j

but yi = yj :
return (xi ,x j)

Second preimage brute force:

A2pi(x):
while true:
x ′← {0, 1}m

y ′ := H (x ′)
if y ′ = H (x): return x ′

Under the simplifying assumption on H , the collision-resistance brute force attack Acr is
essentially choosing each yi uniformly at random. Since each yi ∈ {0, 1}n , the probability
of �nding a repeated value after q times through the main loop is roughly Θ(q2/2n) by
the birthday bound. While in the worst case it could take 2n steps to �nd a collision in
H , the birthday bound implies that it takes only 2n/2 attempts to �nd a collision with 99%
probability (or any constant probability).

On the other hand, the second-preimage brute force attack A2pi is given y as input
and (under our simplifying assumption on H) essentially samples y ′ uniformly at random
until y is the result. It will therefore take Θ(2n) attempts in expectation to terminate
successfully.1

There is a fundamental di�erence in how hard it is to break collision resistance and
second-preimage resistance. Breaking collision-resistance is like inviting more people into
the room until the room contains 2 people with the same birthday. Breaking second-
preimage resistance is like inviting more people into the room until the room contains
another person with your birthday. One of these fundamentally takes longer than the
other.

1A well-known and useful fact from probability theory is that if an event happens with probability p,
then the expected number of times to repeat before seeing the event is 1/p. For example, the probability of
rolling a 1 on a d6 die is 1/6, so it takes 6 rolls in expectation before seeing a 1. The probability of sampling a
particular y from {0, 1}n in one try is 1/2n , so the expected number of trials before seeing y is 2n .

202

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

This di�erence explains why you will typically see cryptographic hash functions in
practice that have 256- to 512-bit output length (but not 128-bit output length), while you
only typically see block ciphers with 128-bit or 256-bit keys. In order to make brute force
attacks cost 2n , a block cipher needs only an n-bit key while a collision-resistant hash
function needs a 2n-bit output.

to-do Discussion of these attacks in terms of graphs, where # of edges is the “number of chances”
to get a collision. Collision-resistance brute force is a complete graph (need

√
N vertices to

have N edges / chances for a collision) . Second-preimage brute force is a star graph (need N
vertices to N edges). Can generalize to consider complete bipartite graph between

√
N +
√
N

vertices.

Hash Function Security In Practice

We will focus on developing a formal de�nition for collision resistance. We can take some
inspiration from the security de�nition for MACs. Security for a MAC means that it should
be hard to produce a forgery. The MAC security de�nition formalized that idea with one
library that checks for a forgery and another library that assumes a forgery is impossible.
If the two libraries are indistinguishable, then it must be hard to �nd a forgery.

We can take a similar approach to say that it should be hard to produce a collision.
Here is an attempt:

test(x ,x ′):
if x , x ′ and H (x) = H (x ′): return true

else: return false

∼∼∼
test(x ,x ′):

return false

This corresponds to what I would call the “folk de�nition” of collision resistance. It makes
intuitive sense (as long as you’re comfortable with our style of security de�nition), but
unfortunately the de�nition su�ers from a very subtle technical problem.

Because of Kerckho�s’ principle, we allow calling programs to depend arbitrarily on
the source code of the two libraries. This is a way of formalizing the idea that “the attacker
knows everything about the algorithms.” Our security de�nitions restrict calling programs
to be polynomial-time algorithms, but they never consider the e�ort that goes into �nding
the source code of the calling program!

This strange loophole leads to the following valid attack. When we consider the se-
curity of some function H , we know that there exists many collisions (x ,x ′) in H . These
collisions may be hard to �nd, but they certainly exist. With exponential time, we could
�nd such an (x ,x ′) pair and write down the code of an attacker:

A:
return test(x ,x ′)

Here, the values x and x ′ are hard-coded into A. The algorithm A is clearly polynomial-
time (in fact, constant time). The “loophoole” is that the de�nition considers only the cost
of running the algorithm A, and not the cost of �nding the source code of A.

203

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

The way this kind of situation is avoided in other security de�nitions is that the li-
braries have some secret randomness. While the attacker is allowed to depend arbitrarily
on the source code of the libraries, it is not allowed to depend on the choice of outcomes
for random events in the libraries, like sampling a secret key. Since the calling program
can’t “prepare” for the random choice that it will be faced with, we don’t have such trivial
attacks. On the other hand, these two libraries for collision resistance are totally deter-
ministic. There are no “surprises” about which function H the calling program will be
asked to compute a collision for, so there is nothing to prevent a calling program from
being “prepared” with a pre-computed collision in H .

Hash Function Security In Theory

The way around this technical issue is to introduce some randomness into the libraries
and into the inputs of H . We de�ne hash functions to take two arguments: a randomly
chosen, public value s called a salt, and an adversarially chosen input x .

Definition 11.1 A hash function H is collision-resistant if LH
cr-real

∼∼∼ L
H
cr-fake

, where:

LH
cr-real

s ← {0, 1}λ

getsalt():
return s

test(x ,x ′ ∈ {0, 1}∗):
if x , x ′ and H (s,x) = H (s,x ′): return true

return false

LH
cr-fake

s ← {0, 1}λ

getsalt():
return s

test(x ,x ′ ∈ {0, 1}∗):
return false

The library initially samples the salt s . Unlike in other libraries, this value s is meant
to be provided to the calling program, and so the library provides a way (getsalt) for the
calling program to learn it. The calling program then attempts to �nd a collision x , x ′

where H (s,x) = H (s,x ′).
I don’t know why the term “salt” is used with hash functions. The reason appears to be

a mystery to the Internet.2 Think of salt as an extra value that “personalizes” the hash
function for a given application. Here is a good analogy: an encryption scheme can be
thought of as a di�erent encryption algorithm Enc(k, ·) for each choice of key k . When I
choose a random k , I get a personalized encryption algorithm Enc(k, ·) that is unrelated
to the algorithm Enc(k ′, ·) that someone else would get when they choose their own k .
When I choose a salt s , I get a personalized hash function H (s, ·) that is unrelated to other
H (s ′, ·) functions. Because the salt is chosen uniformly from {0, 1}λ , a calling program
cannot predict what salt (which personalized hash function) it will be challenged with.

De�nition 11.1 is a valid de�nition for collision resistance, free of strange loopholes
like the “folklore” de�nition. However, it is not a particularly useful de�nition to use
in security proofs, when a hash function is used as a building block in a bigger system.

2If you have an additional random argument to a hash function, but you keep it secret, it is called a
“pepper.” I’m serious, this is a real thing.

204

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

It becomes cumbersome to use in those cases, because when you use a hash function,
you typically don’t explicitly check whether you’ve seen a collision. Instead, you simply
proceed as if collisions are not going to happen.

In this chapter, we won’t see provable statements of security referring to this de�ni-
tion.

Salts in Practice

When we de�ne hash functions in theory, we require that the hash function accept two
inputs, the �rst of which is interpreted as a salt. The hash functions that you see in practice
have only one input, a string of arbitrary length. You can simulate the e�ect of a salt for
such a hash function by simply concatenating the two inputs — e.g., H (s‖x) instead of
H (s,x).

The concept of a salted hash is not just useful to make a coherent security de�nition, it
is also just good practice. Hash functions are commonly used to store passwords. A server
may store user records of the form (username,h = H (password)). When a user attempts
to login with password p ′, the server computes H (p ′) and compares it to h. Storing hashed
passwords means that, in the event that the password �le is stolen, an attacker would need
to �nd a preimage of h in order to impersonate the user.

Best practice is to use a separate salt for each user. Instead of stor-
ing (username,H (password)), choose a random salt s for each user and store
(username, s,H (s, password)). The security properties of a hash function do not require s
to be secret, although there is also no good reason to broadcast a user’s salt publicly. The
salt is only needed by the server, when it veri�es a password during a login attempt.

A user-speci�c salt means that each user gets their own “personalized” hash function
to store their password. Salts o�er the following bene�ts:

I Without salts, it would be evident when two users have the same password — they
would have the same password hashes. The same password hashed with di�erent
salts will result in unrelated hash outputs.

I An attacker can compute a dictionary of (p,H (p)) for common passwords. Without
salts, this dictionary makes it easy to attack all users at once, since all users are using
the same hash function. With salts, each user has a personalized hash function, each
of which would require its own dictionary. Salt makes an attacker’s e�ort scale with
the number of victims.

11.2 Merkle-Damgård Construction

Building a hash function, especially one that accepts inputs of arbitrary length, seems like
a challenging task. In this section, we’ll see one approach for constructing hash functions,
called the Merkle-Damgård construction.

Instead of a full-�edged hash function, imagine that we had a collision-resistant func-
tion whose inputs were of a single �xed length, but longer than its outputs. In other words,
h : {0, 1}n+t → {0, 1}n , where t > 0. We call such an h a compression function. This is
not compression in the usual sense of the word — we are not concerned about recovering

205

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

the input from the output. We call it a compression function because it “compresses” its
input by t bits (analogous to how a pseudorandom generator “stretches” its input by some
amount).

The following construction is one way to build a full-�edged hash function (supporting
inputs of arbitrary length) out of such a compression function:

Construction 11.2

(Merkle-Damgård)

Let h : {0, 1}n+t → {0, 1}n be a compression function. Then the Merkle-Damgård trans-
formation of h is MDh : {0, 1}∗ → {0, 1}n , where:

mdpadt (x)
` := |x |, as length-t binary number
while |x | not a multiple of t :
x := x ‖0

return x ‖`

MDh(x):
x1‖ · · · ‖xk+1 := mdpadt (x)
// each xi is t bits
y0 := 0n

for i = 1 to k + 1:
yi := h(yi−1‖xi)

output yk+1

h h h h h· · · MDh(x)y0

x = x1 x2 x3 · · · xk |x |

The idea of the Merkle-Damgård construction is to split the input x into blocks of size
t . The end of the string is �lled out with 0s if necessary. A �nal block called the “padding
block” is added, which encodes the (original) length of x in binary.

Example Suppose we have a compression function h : {0, 1}48 → {0, 1}32, so that t = 16. We build
a Merkle-Damgård hash function out of this compression function and wish to compute the
hash of the following 5-byte (40-bit) string:

x = 01100011 11001101 01000011 10010111 01010000

We must �rst pad x appropriately (mdpad(x)):

I Since x is not a multiple of t = 16 bits, we need to add 8 bits to make it so.

I Since |x | = 40, we need to add an extra 16-bit block that encodes the number 40 in
binary (101000).

After this padding, and splitting the result into blocks of length 16, we have the following:

01100011 11001101︸ ︷︷ ︸
x1

01000011 10010111︸ ︷︷ ︸
x2

01010000 00000000︸ ︷︷ ︸
x3

00000000 00101000︸ ︷︷ ︸
x4

The �nal hash of x is computed as follows:

206

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

h h h h MDh(x)
032

01100011 11001101 01000011 10010111 01010000 00000000 00000000 00101000

x︷ ︸︸ ︷ MD padding︷ ︸︸ ︷

We are presenting a simpli�ed version, in which MDh accepts inputs whose maxi-
mum length is 2t − 1 bits (the length of the input must �t into t bits). By using multiple
padding blocks (when necessary) and a suitable encoding of the original string length, the
construction can be made to accommodate inputs of arbitrary length (see the exercises).

The value y0 is called the initialization vector (IV), and it is a hard-coded part of the
algorithm.

As discussed above, we will not be making provable security claims using the library-
style de�nitions. However, we can justify the Merkle-Damgård construction with the fol-
lowing claim:

Claim 11.3 Suppose h is a compression function and MDh is the Merkle-Damgård construction applied
to h. Given a collision x ,x ′ in MDh , it is easy to �nd a collision in h. In other words, if it is
hard to �nd a collision in h, then it must also be hard to �nd a collision in MDh .

Proof Suppose that x ,x ′ are a collision under MDh . De�ne the values x1, . . . ,xk+1 and
y1, . . . ,yk+1 as in the computation of MDh(x). Similarly, de�ne x ′1, . . . ,x

′
k ′+1 and

y ′1, . . . ,y
′
k ′+1 as in the computation of MDh(x

′). Note that, in general, k may not equal
k ′.

Recall that:

MDh(x) = yk+1 = h(yk ‖xk+1)

MDh(x
′) = y ′k ′+1 = h(y

′
k ′ ‖x

′
k ′+1)

Since we are assuming MDh(x) = MDh(x
′), we have yk+1 = y ′k ′+1. We consider two cases:

Case 1: If |x | , |x ′ |, then the padding blocks xk+1 and x ′k ′+1 which encode |x | and |x ′ | are
not equal. Hence we have yk ‖xk+1 , y ′k ′ ‖x

′
k ′+1, so yk ‖xk+1 and y ′k ′ ‖x

′
k ′+1 are a collision

under h and we are done.

Case 2: If |x | = |x ′ |, then x and x ′ are broken into the same number of blocks, so k = k ′.
Let us work backwards from the �nal step in the computations of MDh(x) and MDh(x

′).
We know that:

yk+1 = h(yk ‖xk+1)
=

y ′k+1 = h(y ′k ‖x
′
k+1)

If yk ‖xk+1 and y ′k ‖x
′
k+1 are not equal, then they are a collision under h and we are done.

Otherwise, we can apply the same logic again to yk and y ′k , which are equal by our as-
sumption.

More generally, if yi = y ′i , then either yi−1‖xi and y ′i−1‖x
′
i are a collision under h (and

we say we are “lucky”), or elseyi−1 = y ′i−1 (and we say we are “unlucky”). We start with the

207

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

premise thatyk = y ′k . Can we ever get “unlucky” every time, and not encounter a collision
when propagating this logic back through the computations of MDh(x) and MDh(x

′)? The
answer is no, because encountering the unlucky case every time would imply that xi = x ′i
for all i . That is, x = x ′. But this contradicts our original assumption that x , x ′. Hence
we must encounter some “lucky” case and therefore a collision in h. �

11.3 Hash Functions vs. MACs: Length-Extension A�acks

When we discuss hash functions, we generally consider the salt s to be public. A natural
question is, what happens when we make the salt private? Of all the cryptographic
primitives we have discussed so far, a hash function with secret salt most closely resembles
a MAC. So, do we get a secure MAC by using a hash function with private salt?

Unfortunately, the answer is no in general (although it can be yes in some cases, de-
pending on the hash function). In particular, the method is insecure whenH is constructed
using the Merkle-Damgård approach. The key observation is that:

knowing H (x) allows you to predict the hash of any string that begins with
mdpad(x).

This concept is best illustrated by example.

Example Let’s return to our previous example, with a compression function h : {0, 1}48 → {0, 1}32.
Suppose we construct a Merkle-Damgård hash out of this compression function, and use the
construction MAC(k,m) = H (k ‖m) as a MAC.

Suppose theMAC key is chosen ask = 01100011 11001101, and an attacker sees theMAC
tag t of the message m = 01000011 10010111 01010000. Then t = H (k ‖m) corresponds
exactly to the example from before:

h h h h t
032

01100011 11001101 01000011 10010111 01010000 00000000 00000000 00101000

k︷ ︸︸ ︷ m︷ ︸︸ ︷ MD padding︷ ︸︸ ︷

The only di�erence from before is that the �rst block contains the MAC key, so its value
is not known to the attacker. We have shaded it in gray here. The attacker knows all other
inputs as well as the output tag t .

I claim that the attacker can now exactly predict the tag of:

m′ = 01000011 10010111 01010000 00000000 00000000 00101000

The correct MAC tag t ′ of this value would be computed by someone with the key as:

208

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

same computation as in MAC(k,m)

h h h h h

(t)
t ′

032

01100011 11001101 01000011 10010111 01010000 00000000 00000000 00101000 00000000 01000000

k︷ ︸︸ ︷ m′︷ ︸︸ ︷ MD padding︷ ︸︸ ︷

The attacker can compute the output t ′ in a di�erent way, without knowing the key. In
particular, the attacker knows all inputs to the last instance of h. Since the h function itself is
public, the attacker can compute this value herself as t ′ = h(t ‖00000000 01000000). Since
she can predict the tag ofm′, having seen only the tag ofm, she has broken the MAC scheme.

Discussion

I In our example, the attacker sees the MAC tag form (computed asH (k ‖m)) and then
forges the tag for m′ = m‖p, where p is the padding you must add when hashing
k ‖m. Note that the padding depends only on the length of k , which we assume is
public.

I The same attack works to forge the tag of anym′ that begins withm‖p. The attacker
would simply have to compute the last several rounds (not just one round) of Merkle-
Damgård herself.

I This is not an attack on collision resistance! Length-extension does not result
in collisions! We are not saying that k ‖m and k ‖m‖p have the same hash under H ,
only that knowing the hash of k ‖m allows you to also compute the hash of k ‖m‖p.

Knowing how H (k ‖m) fails to be a MAC helps us understand better ways to build a
secure MAC from a hash function:

I The Merkle-Damgård approach su�ers from length-extension attacks because it out-
puts its entire internal state. In the example picture above, the value t is both the
output of H (k ‖m) as well as the only information about k ‖m needed to compute the
last call to h in the computation H (k ‖m‖p).

One way to avoid this problem is to only output part of the internal state. In Merkle-
Damgård, we computeyi := h(yi−1‖xi) until reaching the �nal outputyk+1. Suppose
instead that we only output half of yk+1 (the yi values may need to be made longer
in order for this to make sense). Then just knowing half of yk+1 is not enough to
predict what the hash output will be in a length-extension scenario.

The hash function SHA-3 was designed in this way (often called a “wide pipe” con-
struction). One of the explicit design criteria of SHA-3 was that H (k ‖m) would be a
secure MAC.

I Length extension with Merkle-Damgård is possible because the computation of
H (k ‖m) exactly appears during the computation of H (k ‖m‖p). Similar problems

209

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

appear in plain CBC-MAC when used with messages of mixed lengths. To avoid
this, we can “do something di�erent” to mark the end of the input. In a “wide pipe”
construction, we throw away half of the internal state at the end. In ECBC-MAC,
we use a di�erent key for the last block of CBC chaining.

We can do something similar to the H (k ‖m) construction, by doing H (k2‖H (k1‖m)),
with independent keys. This change is enough to mark the end of the input.
This construction is known as NMAC, and it can be proven secure for Merkle-
Damgård hash functions, under certain assumptions about their underlying com-
pression function. A closely related (and popular) construction calledHMAC allows
k1 and k2 to even be related in some way.

Exercises

11.1. Sometimes when I verify an MD5 hash visually, I just check the �rst few and the last few
hex digits, and don’t really look at the middle of the hash.

Generate two �les with opposite meanings, whose MD5 hashes agree in their �rst 16 bits
(4 hex digits) and in their last 16 bits (4 hex digits). It could be two text �les that say
opposite things. It could be an image of Mario and an image of Bowser. I don’t know, be
creative.

As an example, the strings “subtitle illusive planes” and “wantings premises

forego” actually agree in the �rst 20 and last 20 bits (�rst and last 5 hex digits) of their
MD5 hashes, but it’s not clear that they’re very meaningful.

$ echo -n "subtitle illusive planes" | md5sum

4188d4cdcf2be92a112bdb8ce4500243 -

$ echo -n "wantings premises forego" | md5sum

4188d209a75e1a9b90c6fe3efe300243 -

Describe how you generated the �les, and how many MD5 evaluations you had to make.

11.2. Let h : {0, 1}n+t → {0, 1}n be a �xed-length compression function. Suppose we forgot
a few of the important features of the Merkle-Damgård transformation, and construct a
hash function H from h as follows:

I Let x be the input.

I Split x into pieces y0,x1,x2, . . . ,xk , where y0 is n bits, and each xi is t bits. The last
piece xk should be padded with zeroes if necessary.

I For i = 1 to k , set yi = h(yi−1‖xi).

I Output yk .

Basically, it is similar to the Merkle-Damgård except we lost the IV and we lost the �nal
padding block.

1. Describe an easy way to �nd two messages that are broken up into the same number
of pieces, which have the same hash value under H .

210

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

2. Describe an easy way to �nd two messages that are broken up into di�erent number
of pieces, which have the same hash value under H .

Hint:

Pickanystringoflengthn+2t,then�ndashorterstringthatcollideswithit.

Neither of your collisions above should involve �nding a collision in h.

11.3. I’ve designed a hash function H : {0, 1}∗ → {0, 1}n . One of my ideas is to make H (x) = x
if x is an n-bit string (assume the behavior of H is much more complicated on inputs of
other lengths). That way, we know with certainty that there are no collisions among n-bit
strings. Have I made a good design decision?

11.4. Same as above, but now if x is n bits long, then H (x) = x ⊕m, where m is a �xed, public
string. Can this be a good hash function?

11.5. Let H be a hash function and let t be a �xed constant. De�ne H (t) as:

H (t)(x) = H (· · ·H (H︸ ︷︷ ︸
t times

(x)) · · ·).

Show that if you are given a collision under H (t) then you can e�ciently �nd a collision
under H .

11.6. In this problem, if x and y are strings of the same length, then we write x v y if x = y or
x comes before y in standard dictionary ordering.

Suppose a function H : {0, 1}∗ → {0, 1}n has the following property. For all strings x and
y of the same length, if x v y then H (x) v H (y). Show that H is not collision resistant
(describe how to e�ciently �nd a collision in such a function).

Hint:

Binarysearch,alwaysrecursingonarangethatisguaranteedtocontainacollision.

? 11.7. Suppose a function H : {0, 1}∗ → {0, 1}n has the following property. For all strings x
and y of the same length, H (x ⊕ y) = H (x) ⊕ H (y). Show that H is not collision resistant
(describe how to e�ciently �nd a collision in such a function).

? 11.8. Let H be a salted hash function with n bits of output, and de�ne the following function:

H ∗(x1‖x2‖x3‖ · · · ‖xk):
return H (1,x1) ⊕ H (2,x2) ⊕ · · · ⊕ H (k,xk)

Note that H ∗ can take inputs of any length (k). Show how to �nd collisions in H ∗ when
k > n.

11.9. Generalize the Merkle-Damgård construction so that it works for arbitrary input lengths
(and arbitrary values of t in the compression function). Extend the proof of Claim 11.3 to
your new construction.

? 11.10. Let F be a secure PRF with n-bit inputs, and let H be a collision-resistant (salted) hash
function with n-bit outputs. De�ne the new function F ′((k, s),x) = F (k,H (s,x)), where
we interpret (k, s) to be its key. Prove that F ′ is a secure PRF with arbitrary-length inputs.

211

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

? 11.11. Let MAC be a secure MAC algorithm with n-bit inputs, and let H be a collision-resistant
(salted) hash function with n-bit outputs. De�ne the new function MAC

′((k, s),x) =
MAC(k,H (s,x)), where we interpret (k, s) to be its key. Prove that MAC

′ is a secure MAC
with arbitrary-length inputs.

11.12. More exotic issues with the Merkle-Damgård construction:

(a) Let H be a hash function with n-bit output, based on the Merkle-Damgård construc-
tion. Show how to compute (with high probability) 4 messages that all hash to the
same value under H , using only ∼ 2 · 2n/2 calls to H .

Hint: The4messagesthatcollidewillhavetheformx‖y,x‖y
′
,x
′
‖yandx

′
‖y
′
.Usealength-

extensionideaandperform2birthdayattacks.

(b) Show how to construct 2d messages that all hash to the same value under H , using
only O(d · 2n/2) evaluations of H .

(c) Suppose H1 and H2 are (di�erent) hash functions, both with n-bit output. Consider the
function H ∗(x) = H1(x)‖H2(x). Since H ∗ has 2n-bit output, it is tempting to think that
�nding a collision in H ∗ will take 2(2n)/2 = 2n e�ort.
However, this intuition is not true when H1 is a Merkle-Damgård hash. Show that
when H1 is Merkle-Damgård, then it is possible to �nd collisions in H ∗ with only
O(n2n/2) e�ort. The attack should assume nothing about H2 (i.e., H2 need not be
Merkle-Damgård).

Hint: Applyingpart(b),�rst�ndasetof2n/2messagesthatallhavethesamehashunderH1.Among
them,�nd2thatalsocollideunderH2.

11.13. Let H be a collision-resistant hash function with output length n. Let H ∗ denote iterating
H in a manner similar to CBC-MAC:

H ∗(x1 · · · x`):
// each xi is n bits
y0 := 0n

for i = 1 to `:
yi := H (xi ⊕ yi−1)

return yi

H H H

⊕ ⊕

x1 x2 x`

H ∗(x)

· · ·

· · ·

· · ·

Show that H ∗ is not collision-resistant. Describe a successful attack.

11.14. Show that a bare PRP is not collision resistant. In other words, if F is a secure PRP, then
show how to e�ciently �nd collisions in H (x ‖y) = F (x ,y).

11.15. Show that the CBC-MAC construction applied to a PRP is not collision-resistant. More
precisely, let F be a secure PRP. Show how to e�ciently �nd collisions in the following

212

Draft: January 3, 2021 CHAPTER 11. HASH FUNCTIONS

salted hash function H :
H (k,m1‖m2‖m3):
c1 := F (k,m1)

c2 := F (k,m2 ⊕ c1)
c3 := F (k,m3 ⊕ c2)
return c3

Here we are interpreting k as the salt. This is yet another example of how collision-
resistance is di�erent than authenticity (MAC).

11.16. Let H : {0, 1}λ → {0, 1}λ be any function, and de�ne the following function H ∗ :
{0, 1}2λ → {0, 1}λ :

H ∗(x ‖y):
z := H (x) ⊕ y
return H (z) ⊕ x

Show how to succeed in an e�cient second-preimage attack on H ∗.

11.17. Adding a plain hash to a plaintext does not result in CCA security. Consider the following
approach for encryption, that uses a plain (unsalted) hash functionH . To encrypt plaintext
m, simply encrypt m‖H (m) under CTR mode. To decrypt, use normal CTR mode decryp-
tion but return err if the plaintext does not have the form m‖H (m) (i.e., if the last n bits
are not a hash of the rest of the CTR-plaintext).

Show that the scheme does not have CCA security.

11.18. In the discussion of length-extension attacks, we noted that a natural way to stop them is to
“do something di�erent” for the last block of Merkle-Damgård. Suppose after performing
the �nal call toh in Merkle-Damgård, we complement the value (yk+1). Does this modi�ed
scheme still have length-extension properties?

213

12 Authenticated Encryption & AEAD

to-do Disclaimer: This chapter is in rough draft stage.

It can be helpful to think of encryption as providing a secure logical channel between
two users who only have access to an insecure physical channel. Below are a few things
that an attacker might do to the insecure physical channel:

I An attacker may passively eavesdrop; i.e., simply observe the channel. A CPA-
secure encryption scheme provides con�dentiality and prevents the attacker from
learning anything by eavesdropping.

I An attacker may drop messages sent along the channel, resulting in a denial of
service. If the attacker can do this on the underlying physical channel, then it cannot
be overcome through cryptography.

I An attacker may try tomodifymessages that are sent along the channel, by tamper-
ing with their ciphertexts. This sounds like what CCA-secure encryption protects
against, right?

I An attacker may try to inject new messages into the channel. If successful, Bob
might receive a message and mistake it for something that Alice meant to send.
Does CCA security protect against this? If it is indeed possible to inject new mes-
sages into the channel, then an attacker can delete Alice’s ciphertexts and replace
them with their own. This would seem to fall under the category of “modifying”
messages on the channel, so message-injection and message-modi�cation are some-
what connected.

I An attacker may try to replay messages that were sent. For example, if Bob was
convinced that a ciphertext c came from Alice, then an attacker can re-send the
same c many times, and Bob may interpret this as Alice wanting to re-send the
same plaintext many times. Does CCA security protect against this?

Although it might seem that CCA-secure encryption guarantees protection against many
of these kinds of attacks, it does not!

To see why, consider the SPRP-based encryption scheme of Construction 9.3. We
proved that this scheme has CCA security. However, it never raises any errors during
decryption. Every ciphertext is interpreted as a valid encryption of some plaintext. An at-
tacker can choose an arbitrary ciphertext, and when Bob decrypts it he might think Alice
was trying to send some (presumably garbled) message. The only thing that CCA security
guarantees is that if an attacker is able to make a ciphertext that decrypts without error,
then it must decrypt to something that is unrelated to the contents of other ciphertexts.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

In order to achieve protection against message-modi�cation and message-injection
on the secure channel, we need a stronger/better security de�nition. Authenticated en-
cryption (AE) formalizes the extra property that only someone with the secret key can
�nd ciphertexts that decrypt without error. For example, encrypt-then-MAC (Construc-
tion 10.9) already has this property.

In this chapter we will discuss authenticated encryption and a closely-related concept
of encryption with associated data (AD), which is designed to help prevent message-
replay attacks. These two concepts are the “gold standard” for encryption.

12.1 Definitions

Authenticated Encryption

As with CPA and CCA �avors of security, we can de�ne AE security in both a “left-vs-
right” style or a “pseudorandom ciphertexts” style. Both are reasonable choices. To make
life simpler we will only de�ne the pseudorandom-ciphertexts-style of AE security in this
chapter.

In CCA$ security, the attacker has access to the decryption algorithm (except for ci-
phertexts generated by the library itself). This captures the idea that the result of de-
crypting adversarially-generated ciphertexts cannot help distinguish the contents of other
ciphertexts. For AE security, we want a stronger condition that Dec(k, c) = err for ev-
ery adversarially-generated ciphertext c . Using the same ideas used to de�ne security
for MACs, we express this requirement by saying that the attacker shouldn’t be able to
distinguish access to the “real” Dec algorithm, or one that always outputs err:

Definition 12.1

(AE)

Let Σ be an encryption scheme. We say that Σ has authenticated encryption (AE) security
if LΣ

ae$-real

∼∼∼ L
Σ
ae$-rand

, where:

LΣ
ae$-real

k ← Σ.KeyGen

S := ∅

ctxt(m ∈ Σ.M):
c := Σ.Enc(k,m)
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S: return err

return Σ.Dec(k, c)

LΣ
ae$-fake

ctxt(m ∈ Σ.M):
c ← Σ.C(|m |)
return c

decrypt(c ∈ Σ.C):
return err

Discussion

The two libraries are di�erent from each other in two major ways: whether the calling
program sees real ciphertexts or random strings (that have nothing to do with the given
plaintext), and whether the calling program sees the true result of decryption or an error

215

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

message. With these two di�erences, we are demanding that two conditions be true: the
calling program can’t tell whether it is seeing real or fake ciphertexts, it also cannot gener-
ate a ciphertext (other than the ones it has seen) that would cause Dec to output anything
except err.

Whenever the calling program calls decrypt(c) for a ciphertext c that was produced
by the library (in ctxt), both libraries will return err by construction. Importantly, the
di�erence in the libraries is the behavior of decrypt on ciphertexts that were not generated
by the library (i.e., generated by the attacker).

Associated Data

AE provides a secure channel between Alice and Bob that is safe from message-
modi�cation and message-injection by the attacker (in addition to providing con�den-
tiality). However, AE still does not protect from replay of messages. If Alice sends a
ciphertext c to Bob, we know that Bob will decrypt c without error. The guarantee of AE
security is that Bob can be sure that the message originated from Alice in this case. If an
attacker re-sends the same c at a later time, Bob will likely interpret that as a sign that
Alice wanted to say the same thing again, even though this was not Alice’s intent. It is
still true that Alice was the originator of the message, but just not at this time.

You may wonder how it is possible to prevent this sort of attack. If a ciphertext c is
a valid ciphertext when Alice sends it, then it will always be a valid ciphertext, right?
A clever way around this problem is for Alice to not only authenticate the ciphertext as
coming from her, but to authenticate it also to a speci�c context. For example, suppose
that Alice & Bob are exchanging encrypted messages, and the 5th ciphertext is c , sent by
Alice. The main idea is to let Alice authenticate the fact that “I meant to send c as the 5th
ciphertext in the conversation." If an attacker re-sends c later (e.g., as the 11th ciphertext,
a di�erent context), Bob will attempt to authenticate the fact that “Alice meant to send c
as the 11th ciphertext,” and this authentication will fail.

What I have called “context” is called associated data in an encryption scheme. In
order to support associated data, we modify the syntax of the encryption and decryption
algorithms to take an additional argument d . The ciphertext c = Enc(k,d,m) is an encryp-
tion of m with associated data d . In an application, d could be a sequence number of a
conversation, a hash of the entire conversation up to this point, an IP address + port num-
ber, etc. — basically, as much information as you can think of regarding this ciphertext’s
intended context. Decrypting c with the “correct” associated data d via Dec(k,d, c) should
result in the correct plaintextm. Decrypting c with any other associated data should result
in an error, since that re�ects a mismatch between the sender’s and receiver’s contexts.

The intuitive security requirement for authenticated encryption with associated
data (AEAD) is that an attacker who sees many encryptions ci of chosen plaintexts, each
authenticated to a particular associated data di , cannot generate a di�erent (c∗,d∗) that
decrypts successfully. The security de�nition rules out attempts to modify some ci under
the same di , or modify some di for the same ci , or produce a completely new (c∗,d∗).

Definition 12.2

(AEAD)

Let Σ be an encryption scheme. We write Σ.D to denote the space of supported associated
data signi�ers (“contexts”). We say that Σ has authenticated encryption with associated
data (AEAD) security if LΣ

aead$-real

∼∼∼ L
Σ
aead$-rand

, where:

216

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

LΣ
aead$-real

k ← Σ.KeyGen

S := ∅

ctxt(d ∈ Σ.D,m ∈ Σ.M):
c := Σ.Enc(k,d,m)
S := S ∪ {(d, c)}
return c

decrypt(d ∈ Σ.D, c ∈ Σ.M):
if (d, c) ∈ S: return err

return Σ.Dec(k,d, c)

LΣ
aead$-fake

ctxt(c ∈ Σ.D,m ∈ Σ.M):
c ← Σ.C(|m |)
return c

decrypt(d ∈ Σ.D, c ∈ Σ.M):
return err

Discussion

One way to “authenticate a message to some context d” is to encrypt m‖d instead of just
m (in an AE scheme). This would indeed work! Including d as part of the plaintext would
indeed authenticate it, but it would also hide it. The point of di�erentiating between plain-
text and associated data is that we assume the associated data is shared context between
both participants. In other words, we assume that the sender and receiver both already
know the context d . Therefore, hiding d is overkill — only authentication is needed. By
making a distinction between plaintext and associated data separately in AEAD, the ci-
phertext length can depend only on the length of the plaintext, and not depend on
the length of the associated data.

The fact that associated data d is public is re�ected in the fact that the calling program
chooses it in the security de�nition.

“Standard” AE corresponds to the case where d is always empty: all ciphertexts are
authenticated to the same context.

12.2 Achieving AE/AEAD

The Encrypt-then-MAC construction (Construction 10.9) has the property that the at-
tacker cannot generate ciphertexts that decrypt correctly. Even though we introduced
encrypt-then-MAC to achieve CCA security, it also achieves the stronger requirement of
AE.

Claim 12.3 If E has CPA security andM is a secure MAC, then EtM (Construction 10.9) has AE security.

to-do There is a slight mismatch here, since I de�ned AE/AEAD security as a “pseudorandom cipher-
texts” style de�nition. So you actually need CPA$+PRF instead of CPA+MAC. But CPA+MAC
is enough for the left-vs-right style of AE/AEAD security.

The security proof is essentially the same as the proof of CCA security (Claim 12.5).
In that proof, there is a hybrid in which the decrypt subroutine always returns an error.
Stopping the proof at that point would result in a proof of AE security.

217

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

Encrypt-then-MAC with Associated Data

Recall that the encrypt-then-MAC construction computes a MAC of the ciphertext. To
incorporate associated data, we simply need to compute a MAC of the ciphertext along
with the associated data.

Recall that most MACs in practice support variable-length inputs, but the length of
the MAC tag does not depend on the length of the message. Hence, this new variant of
encrypt-then-MAC has ciphertexts whose length does not depend on the length of the
associated data.

Construction 12.4

(Enc+MAC+AD)

Enc((ke,km), d ,m):
c ← E.Enc(ke,m)

t := M .MAC(km, d ‖ c)

return (c, t)

Dec((ke,km), d , (c, t)):
if t , M .MAC(km, d ‖ c):

return err

return E.Dec(ke, c)

Claim 12.5 If E has CPA security and M is a secure MAC, then Construction 12.4 has AEAD security,
when the associated data has �xed length (i.e., D = {0, 1}n for some �xed n).

to-do This construction is insecure for variable-length associated data. It is not terribly hard to �x
this; see exercises.

12.3 Carter-Wegman MACs

Suppose we construct an AE[AD] scheme using the encrypt-then-MAC paradigm. A good
choice for the CPA-secure encryption scheme would be CBC mode; a good choice for the
MAC scheme would be ECBC-MAC. Combining these two building blocks would result in
an AE[AD] scheme that invokes the block cipher twice for each plaintext block — once for
the CBC encryption (applied to the plaintext) and once more for the ECBC-MAC (applied
to that ciphertext block).

Is it possible to achieve AE[AD] with less cost? In this section we will explore a more
e�cient technique for variable-length MACs, which requires only one multiplication op-
eration per message block along with a single invocation of a block cipher.

Universal Hash Functions

The main building block in Carter-Wegman-style MACs is a kind of hash function called
a universal hash function (UHF). While the name “universal hash function” sounds like
it must be an incredibly strong primitive, a UHF actually gives a much weaker security
guarantee than a collision-resistant or second-preimage-resistant hash function.

Recall that (x ,x ′) is a collision under salt s if x , x ′ andH (s,x) = H (s,x ′). A universal
hash function has the property that it is hard to �nd such a collision . . .

. . . when x and x ′ are chosen without knowledge of the salt,

. . . and when the attacker has only one attempt at �nding a collision for a particular salt
value.

218

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

These constraints are equivalent to choosing the salt after x and x ′ are chosen, and a
collision should be negligibly likely under such circumstances.

The de�nition can be stated more formally:

Definition 12.6

(UHF)

A hash function H with set of salts S is called a universal hash function (UHF) if
LH

uhf-real

∼∼∼ L
H
uhf-fake

, where:

LH
uhf-real

test(x ,x ′ ∈ {0, 1}∗):
s ← S

b :=
[
H (s,x)

?
= H (s,x ′)

]
return (s,b)

LH
uhf-fake

test(x ,x ′ ∈ {0, 1}∗):
s ← S
return (s, false)

This de�nition is similar in spirit to the formal de�nition of collision resistance (Def-
inition 11.1). Just like that de�nition, this one is cumbersome to use in a security proof.
When using a hash function, one typically does not explicitly check for collisions, but
instead just proceeds as if there was no collision.

In the case of UHFs, there is a di�erent and helpful way of thinking about security.
Consider a “blind collision-resistance” game, where you try to �nd a collision under H
without access to the salt, and even without seeing the outputs of H ! It turns out that if H
is a UHF, then it is hard to �nd collisions in such a game:

Claim 12.7 If H is a UHF, then the following libraries are indistinguishable:

LH
bcr-real

s ← S
Hinv

:= empty assoc. array

test(x ∈ {0, 1}∗):
y := H (s,x)
if Hinv[y] de�ned and Hinv[y] , x :

return Hinv[y]
Hinv[y] := x
return false

∼∼∼

LH
bcr-fake

test(x ∈ {0, 1}∗):
return false

In these libraries, the calling program chooses inputs x to the UHF. TheLbcr-real library
maintains a private record of all of the x values and their hashes, in the form of a reverse
lookup table. Hinv[y] will hold the value x that was hashed to result in y.

If the calling program calls test(x) on a value that collides with a previous x ′, then
Lbcr-real will respond with this x ′ value (the purpose of this is just to be helpful to security
proofs that use these libraries); otherwise it will respond with false, giving no information
about s or H (s,x). The other library always responds with false. Hence, the two are
indistinguishable only if �nding collisions is hard.

to-do Proof to come. It’s not hard but tedious.

219

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

Constructing UHFs using Polynomials

UHFs have much weaker security than other kinds of hashing, and they can in fact be
constructed unconditionally. One of the mathematically simplest constructions has to do
with polynomials.

Claim 12.8 Let p be a prime and д be a nonzero polynomial with coe�cients in Zp and degree at most d .
Then д has at most d zeroes from Zp .

This observation leads to a simple UHF construction, whose idea is to interpret the
string x as the coe�cients of a polynomial, and evaluate that polynomial at point s (the
salt of the UHF). In more detail, letp be a prime withp > 2λ , and let the salt s be a uniformly
chosen element of Zp . To compute the hash of x , �rst split x into λ-bit blocks, which will
be convenient to index as xd−1‖xd−2‖ . . . ‖x0. Interpret each xi as a number mod p. Then,
the value of the hash H (s,x) is:

sd + xd−1s
d−1 + xd−2s

d−2 + · · · + x0 (mod p)

This is the result of evaluating a polynomial with coe�cients (1,xd−1,xd−2, . . . ,x0) at the
point s . A convenient way to evaluate this polynomial is by using Horner’s rule:

· · · s · (s · (s + xd−1) + xd−2) + xd−3 · · ·

Horner’s rule can be expressed visually as follows:

s

xd−1 xd−2 xd−3 · · ·

× × ×+ + + · · ·

The UHF construction is described formally below.

Construction 12.9

(Poly-UHF)

p = a prime > 2λ
S = Zp

H (s,x):
write x = xd−1‖xd−2‖ · · · ‖x0,

where each |xi | = λ

y := 1
for i = d − 1 downto 0:
y := s · y + xi % p

return y

Claim 12.10 The Poly-UHF construction is a secure UHF.

Proof It su�ces to show that, for any x , x ′, the probability that H (s,x) = H (s,x ′) (taken over
random choice of s) is negligible. Note that H (s,x) = д(s), where д is a polynomial whose
coe�cients are (1,xd−1, . . . ,x0), and H (s,x ′) = д′(s), where д′ is a similar polynomial
derived from x ′. Note that x and x ′ may be split into a di�erent number of blocks, leading
to di�erent degrees (d and d ′) for the two polynomials.

220

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

In order to have a collision H (s,x) = H (s,x ′), we must have

д(s) ≡p д
′(s)

⇐⇒ д(s) − д′(s) ≡p 0

Note that the left-hand side in this equation is a polynomial of degree at most d∗ =
max{d,d ′}. Furthermore, that polynomial д − д′ is not the zero polynomial because д
and д′ are di�erent polynomials. Even if the original strings x and x ′ di�er only in blocks
of 0s, the resulting д and д′ will be di�erent polynomials because they include an extra
leading coe�cient of 1.

A collision happens if and only if s is chosen to be one of the roots of д − д′. From
Claim 12.8, the polynomial has at most d∗ roots, so the probability of choosing one of them
is at most:

d∗/p 6 d∗/2λ .

This probability is negligible since d∗ is polynomial in λ (it is the number of blocks in a
string that was written down by the attacker, who runs in polynomial time in λ). �

to-do Fine print: this works but modular multiplication is not fast. If you want this to be fast, you
would use a binary �nite �eld. It is not so bad to describe what �nite �elds are, but doing so
involves more polynomials. Then when you make polynomials whose coe�cients are �nite
�eld elements, it runs the risk of feeling like polynomials over polynomials (because at some
level it is). Not sure how I will eventually deal with this.

Carter-Wegman UHF-based MAC

A UHF by itself is not a good MAC, even when its salt s is kept secret. This is because
the security of a MAC must hold even when the attacker sees the function’s outputs, but
a UHF provides security (blind collision-resistance) only when the attacker does not see
the UHF outputs.

The Carter-Wegman MAC technique augments a UHF by sending its output through
a PRF, so the MAC ofm is F (k,H (s,m)) where H is a UHF and F is a PRF.

Construction 12.11

(Carter-Wegman)

Let H be a UHF with n bits of output, and let F be a secure PRF with in = n. The Carter-
Wegman construction combines them as follows:

KeyGen:
k ← {0, 1}λ

s ← S
return (k, s)

MAC

(
(k, s),x

)
:

y := H (s,x)
return F (k,y)

We will show that the Carter-Wegman construction is a secure PRF. Recall that this
implies that the construction is also a secure MAC (Claim 10.4). Note that the Carter-
Wegman construction also uses a PRF as a building block. However, it uses a PRF for short
messages, to construct a PRF for arbitrary-length messages. Furthermore, it only calls the
underlying PRF once, and all other computations involving the UHF are comparitively
“cheap.”

221

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

To understand the security of Carter-Wegman, we work backwards. The output
F (k,H (s,x)) comes directly from a PRF. These outputs will look random as long as the
inputs to the PRF are distinct. In this construction, the only way for PRF inputs to repeat
is for there to be a collision in the UHF H . However, we have to be careful. We can only
reason about the collision-resistance of H when its salt is secret and its outputs are hidden
from the attacker. The salt is indeed hidden in this case (kept as part of the Carter-Wegman
key), but its outputs are being used as PRF inputs. Fortunately, the guarantee of a PRF is
that its outputs appear unrelated to its inputs. In other words, the PRF outputs leak no in-
formation about the PRF inputs (H -outputs). Indeed, this appears to be a situation where
the UHF outputs are hidden from the attacker, so we can argue that collisions in H are
negligibly likely.

Claim 12.12 If H is a secure UHF and F is a secure PRF, then the Carter-Wegman construction (Construc-
tion 12.11) is a secure PRF, and hence a secure MAC as well.

Proof We will show that LCW

prf-real

∼∼∼ L
CW

prf-rand
using a standard hybrid technique.

LCW

prf-real

k ← {0, 1}λ

s ← S

lookup(x):
y := H (s,x)
return F (k,y)

The starting point is LCW

prf-real
.

T := empty assoc. array
s ← S

lookup(x):
y := H (s,x)

if T [y] unde�ned:
T [y] ← {0, 1}out

return T [y]

We have applied the security of F , by factoring out in
terms of LF

prf-real
, replacing it with LF

prf-rand
, and inlining

the result.

222

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

cache := empty assoc. array
T := empty assoc. array
s ← S

lookup(x):
if cache[x] unde�ned:
y := H (s,x)
if T [y] unde�ned:
T [y] ← {0, 1}out

cache[x] := T [y]
return cache[x]

The lookup subroutine has the property that if it is called
on the same x twice, it will return the same result. It
therefore does no harm to cache the answer every time.
The second time lookup is called on the same value x ,
the previous value is loaded from cache rather than re-
computed. This change has no e�ect on the calling pro-
gram.

cache := empty assoc. array
Hinv

:= empty assoc. array
T := empty assoc. array
s ← S

lookup(x):
if cache[x] unde�ned:
y := H (s,x)

if Hinv[y] de�ned:
x ′ := Hinv[y]
return cache[x ′]

if T [y] unde�ned:
T [y] ← {0, 1}out

Hinv[y] := x

cache[x] := T [y]
return cache[x]

Note that if lookup is �rst called on x ′ and then later on
x , where H (s,x) = H (s,x ′), lookup will return the same
result. We therefore modify the library to keep track of
H -outputs and inputs. Whenever the library computes
y = H (s,x), it stores Hinv[y] = x . However, if Hinv[y]
already exists, it means that this x and x ′ = Hinv[y] are
a collision under H . In that case, the library directly re-
turns whatever it previously returned on input x ′. This
change has no e�ect on the calling program.

223

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

cache := empty assoc. array
Hinv

:= empty assoc. array
T := empty assoc. array
s ← S

lookup(x):
if cache[x] unde�ned:
y := H (s,x)
if Hinv[y] de�ned:
x ′ := Hinv[y]
return cache[x ′]

if Hinv[y] unde�ned:
T [y] ← {0, 1}out

Hinv[y] := x
cache[x] := T [y]

return cache[x]

In the previous hybrid,T [y] is set at the same timeHinv[y]
is set — on the �rst call lookup(x) such that H (s,x) =
y. Therefore, it has no e�ect on the calling program to
check whether T [y] is de�ned or check whether Hinv[y]
is de�ned.

cache := empty assoc. array
Hinv

:= empty assoc. array
s ← S

lookup(x):
if cache[x] unde�ned:
y := H (s,x)
if Hinv[y] de�ned:
x ′ := Hinv[y]
return cache[x ′]

if Hinv[y] unde�ned:
cache[x] ← {0, 1}out

Hinv[y] := x
return cache[x]

Note that if Hinv[y] is de�ned, then lookup returns
within that if-statement. The line cache[x] := T [y] is
therefore only executed in the case that Hinv[y] was not
initially de�ned. Instead of choosingT [y] only to imme-
diately assign it to cache[x], we just assign directly to
cache[x]. This change has no e�ect on the calling pro-
gram, and it does away with the T associative array en-
tirely.

The if-statements involving Hinv in this hybrid are checking whether x has collided
with any previous x ′ under H . All of this logic, including the evaluation of H , can be
factored out in terms of LH

bcr-real
. At this point in the sequence of hybrids, the output of H

is not needed, except to check whether a collision has been encountered (and if so, what
the o�ending inputs are). Again, this change has no e�ect on the calling program. The

224

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

result is:

cache := empty assoc. array

lookup(x):
if cache[x] unde�ned:

if test(x) = x ′ , false :
return cache[x ′]

else:
cache[x] ← {0, 1}out

return cache[x]

�

LH
bcr-real

s ← S
Hinv

:= empty assoc. array

test(x):
y := H (s,x)
if Hinv[y] de�ned:

return Hinv[y]
Hinv[y] := x
return false

The security of H is that we can swap LH
bcr-real

for LH
bcr-fake

, with negligible e�ect on the
calling program. Note that test algorithm in Lbcr-fake always returns false. This leads us
to simply remove the “if test(x) , false” clause, resulting in the following:

LCW

prf-rand

cache := empty assoc. array
lookup(x):

if cache[x] unde�ned:
cache[x] ← {0, 1}out

return cache[x]

Since this is exactly LCW

prf-rand
, we are done. We have shown that LCW

prf-rand

∼∼∼ L
CW

prf-rand
. �

12.4 Galois Counter Mode for AEAD

The most common block cipher mode for AEAD is called Galois Counter Mode (GCM).
GCM is essentially an instance of encrypt-then-MAC, combining CTR mode for encryption
and the polynomial-based Carter-Wegman MAC for authentication. GCM is relatively
inexpensive since it requires only one call to the block cipher per plaintext block, plus one
multiplication for each block of ciphertext + associated data.

Rather than using polynomials over Zp , GCM mode uses polynomials de�ned over a
�nite �eld with 2λ elements. Such �elds are often called “Galois �elds,” which leads to the
name Galois counter mode.

to-do More information about GCM will go here. Again, would be nice to have a crash course in
�nite �elds.

225

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

CTR encryption

Carter-Wegman MAC of CTR ciphertext

Fk1 Fk1 Fk1 Fk1

$

⊕ ⊕ ⊕ ⊕

m1 m2 m3 m`

c0 c1 c2 c3 c`

+1 +1 +1

· · ·

· · ·

· · ·

c`+1

Fk3
k2

× × × ×⊕ ⊕ ⊕ ⊕ ⊕· · ·

Exercises

to-do . . . more on the way . . .

12.1. Suppose Enc-then-MAC+AD is instantiated with CBC mode and any secure MAC, as de-
scribed in Construction 12.4. The scheme is secure for �xed-length associated data. Show
that if variable-length associated data is allowed, then the scheme does not provide AEAD
security.

Note: you are not attacking the MAC! Take advantage of the fact that d ‖c is ambiguous
when the length of d is not �xed and publicly known.

12.2. Suggest a way to make Construction 12.4 secure for variable-length associated data. Prove
that your construction is secure.

12.3. Show that if you know the salt s of the Poly-UHF construction (Construction 12.9), you
can e�ciently �nd a collision.

12.4. Show that if you are allowed to see only the output of Poly-UHF (i.e., the salt remains
hidden), on chosen inputs then you can compute the salt.

226

13 RSA & Digital Signatures

RSA was among the �rst public-key cryptography developed. It was �rst described in
1978, and is named after its creators, Ron Rivest, Adi Shamir, and Len Adleman.1 RSA
can be used as a building block for public-key encryption and digital signatures. In this
chapter we discuss only the application of RSA for digital signatures.

13.1 “Dividing” Mod n

to-do I’m considering moving some of this material to Chapter 3 (secret sharing) — enough to un-
derstand that every nonzero element has a multiplicative inverses modulo a prime (totients,
etc can stay here). That way, I don’t have to say “trust me, this can be made to work” when de-
scribing Lagrange interpolation over a prime �eld, and students can play around with secret
sharing using Sage. Also, students will see that there is “serious math” in the course already in
chapter 3 so they don’t get blindsided as we transition into public-key crypto. (Not to mention,
this chapter is too long.)

Please review the material from Section 0.2, to make sure your understanding of ba-
sic modular arithmetic is fresh. You should be comfortable with the de�nitions of Zn ,
congruence (≡n), the modulus operator (%), and how to do addition, multiplication, and
subtraction mod n.

Note that we haven’t mentioned division mod n. Does it even make sense to talk about
division mod n?

Example Consider the following facts which hold mod 15:

2 · 8 ≡15 1 10 · 8 ≡15 5
4 · 8 ≡15 2 12 · 8 ≡15 6
6 · 8 ≡15 3 14 · 8 ≡15 7
8 · 8 ≡15 4

Now imagine replacing “ · 8” with “ ÷ 2” in each of these examples:

2 ÷2 ≡15 1 10 ÷2 ≡15 5
4 ÷2 ≡15 2 12 ÷2 ≡15 6
6 ÷2 ≡15 3 14 ÷2 ≡15 7
8 ÷2 ≡15 4

1Cli�ord Cocks developed an equivalent scheme in 1973, but it was classi�ed since he was working for
British intelligence.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Everything still makes sense! Somehow, multiplying by 8 mod 15 seems to be the same thing
as “dividing by 2” mod 15.

The previous examples all used x · 8 (x ÷ 2) where x was an even number. What happens
when x is an odd number?

3 · 8 ≡15 9 ⇐⇒ “3 ÷ 2 ≡15 9” ??

This might seem non-sensical, but if we make the substitutions 3 ≡15 −12 and 9 ≡15 −6, then
we do indeed get something that makes sense:

−12 · 8 ≡15 −6 ⇐⇒ −12 ÷ 2 ≡15 −6

This example shows that there is surely some interesting relationship among the num-
bers 2, 8, and 15. It seems reasonable to interpret “multiplication by 8” as “division by 2”
when working mod 15.

Is there a way we can do something similar for “division by 3” mod 15? Can we �nd
some y where “multiplication by y mod 15” has the same behavior as “division by 3 mod
15?” In particular, we would seek a value y that satis�es 3 · y ≡15 1, but you can check for
yourself that no such value of y exists.

Why can we “divide by 2” mod 15 but we apparently cannot “divide by 3” mod 15? We
will explore this question in the remainder of this section.

Multiplicative Inverses

We usually don’t directly use the terminology of “division” with modular arithmetic. In-
stead of saying “division by 2”, we say “multiplication by 2−1”, where 2−1 is just another
name for 8.

Definition 13.1

(x−1 mod n)

The multiplicative inverse of x mod n is the integer y that satis�es x · y ≡n 1 (if such a
number exists). We usually refer to the multiplicative inverse of x as “x−1.”

Example Contuining to work mod 15, we have:

I 4−1 ≡15 4 since 4 · 4 = 16 ≡15 1. Hence 4 is its own multiplicative inverse! You can also
understand this as:

4−1 = (22)−1 = (2−1)2 ≡15 82 = 64 ≡15 4

I 7−1 ≡15 13 since 7 · 13 = 91 ≡15 1.

We are interested in which numbers have a multiplicative inverse mod n.

Definition 13.2

(Z∗n)

Themultiplicative group2 modulo n is de�ned as:

Z∗n = {x ∈ Zn | x has a multiplicative inverse mod n}

2“Group” is a technical term from abstract algebra.

228

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

For example, we have seen that Z∗n contains the numbers 2, 4, and 7 (and perhaps
others), but it doesn’t contain the number 3 since 3 does not have a multiplicative inverse.

So which numbers have a multiplicative inverse mod n, in general? (Which numbers
belong to Z∗n?) The answer is quite simple:

Theorem 13.3 x has a multiplicative inverse mod n if and only if gcd(x ,n) = 1. In other words, Z∗n = {x ∈
Zn | gcd(x ,n) = 1}.

We prove the theorem using another fact from abstract algebra which is often useful:

Theorem 13.4

(Bezout’s Theorem)

For all integers x and y, there exist integers a and b such that ax + by = gcd(x ,y). In fact,
gcd(x ,y) is the smallest positive integer that can be written as an integral linear combination
of x and y.

We won’t prove Bezout’s theorem, but we will show how it is used to prove Theo-
rem 13.3:

Proof

(of Theorem 13.3)

(⇐) Suppose gcd(x ,n) = 1. We will show that x has a multiplicative inverse mod n. From
Bezout’s theorem, there exist integers a,b satisfying ax + bn = 1. By reducing both sides
of this equation modulo n, we have

1 = ax + bn ≡n ax + b · 0 = ax .

Thus the integer a that falls out of Bezout’s theorem is the multiplicative inverse of x
modulo n.

(⇒) Suppose x has a multiplicative inverse mod n, so xx−1 ≡n 1. We need to show
that gcd(x ,n) = 1. From the de�nition of ≡n , we know that n divides xx−1 − 1, so we can
write xx−1 − 1 = kn (as an expression over the integers) for some integer k . Rearranging,
we have xx−1 − kn = 1. Since we can write 1 as an integral linear combination of x and n,
Bezout’s theorem says that we must have gcd(x ,n) = 1. �

Example Z15 = {0, 1, . . . , 14}, and to obtain Z∗15 we exclude any of the numbers that share a common
factor with 15. In other words, we exclude the multiples of 3 and multiples of 5. The remaining
numbers are Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}.

Since 11 is a prime, 0 is the only number in Z11 that shares a common factor with 11. All
the rest satisfy gcd(x , 11) = 1. Hence, Z∗11 = {1, 2, · · · , 10}.

Example We can use Sage3 to play around with these concepts. Sage supports the % operator for mod-
ulus:

sage: 2*8 % 15

1

It also supports a convenient way to generate “Zn-objects,” or Mod-objects as they are called.
An object like Mod(2,15) represents the value 2 ∈ Z15, and all of its operations are overloaded
to be the mod-15 operations:

3
h�ps://www.sagemath.org

229

https://www.sagemath.org

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

sage: Mod(2,15)*8

1

sage: Mod(2,15)+31415926

3

sage: Mod(-1,15)

14

In Sage, you can compute multiplicative inverses in a few di�erent ways:

sage: Mod(2,15)^-1

8

sage: 1/Mod(2,15)

8

sage: 2.inverse_mod(15)

8

sage: (1/2) % 15

8

Sage is smart enough to know when a multiplicative inverse doesn’t exist:

sage: Mod(3,15)^-1

ZeroDivisionError: inverse of Mod(3, 15) does not exist

Sage supports huge integers, with no problem:

sage: n = 3141592653589793238462643383279502884197169399375105820974944

sage: x = 1234567890123456789012345678901234567890123456789012345678901

sage: 1/Mod(x,n)

2234412539909122491686747985730075304931040310346724620855837

The relationship between multiplicative inverses and GCD goes even farther than The-
orem 13.3. Recall that we can compute gcd(x ,n) e�ciently using Euclid’s algorithm. There
is a relatively simple modi�cation to Euclid’s algorithm that also computes the corresop-
nding Bezout coe�cients with little extra work. In other words, given x andn, it is possible
to e�ciently compute integers a, b, and d such that

ax + bn = d = gcd(x ,n)

In the case where gcd(x ,n) = d = 1, the integer a is a multiplicative inverse of x mod n.
The “extended Euclidean algorithm” for GCD is given below:

extgcd(x ,y):
// returns (d,a,b) such that gcd(x ,y) = d = ax + by
if y = 0:

return (x , 1, 0)
else:
(d,a,b) := extgcd(y,x % y)
return (d,b,a − b bx/yc)

230

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Example Sage implements the extended Euclidean algorithm as “xgcd”:

sage: xgcd(427,529)

(1, 223, -180)

sage: 223*427 + (-180)*529

1

You can then see that 223 and 427 are multiplicative inverses mod 529:

sage: 427*223 % 529

1

The Totient Function

Euler’s totient function is de�ned as ϕ(n) def= |Z∗n |; that is, the number of elements of Zn
that have multiplicative inverses.

As an example, if n is a prime, then Z∗n = Zn \ {0} because every integer in Zn apart
from zero is relatively prime to n. Therefore, ϕ(n) = n − 1 in this case.

RSA involves a modulus n that is the product of two distinct primes n = pq. In that
case, ϕ(n) = (p − 1)(q − 1). To see why, let’s count how many elements in Zpq share a
common divisor with pq (i.e., are not in Z∗pq).

I The multiples of p share a common divisor with pq. These include
0,p, 2p, 3p, . . . , (q − 1)p. There are q elements in this list.

I The multiples of q share a common divisor with pq. These include
0,q, 2q, 3q, . . . , (p − 1)q. There are p elements in this list.

We have clearly double-counted element 0 in these lists. But no other element is double
counted. Any item that occurs in both lists would be a common multiple of both p and q,
but since p and q are relatively prime, their least common multiple is pq, which is larger
than any item in these lists.

We count p + q − 1 elements of Zpq which share a common divisor with pq. The rest
belong to Z∗pq , and there are pq − (p + q − 1) = (p − 1)(q − 1) of them. Hence ϕ(pq) =
(p − 1)(q − 1).

General formulas for ϕ(n) exist, but they typically rely on knowing the prime factor-
ization of n. We will see more connections between the di�culty of computing ϕ(n) and
the di�culty of factoring n later in this part of the course.

The reason we consider ϕ(n) at all is this fundamental theorem from abstract algebra:

Theorem 13.5

(Euler’s Theorem)

If x ∈ Z∗n then xϕ(n) ≡n 1.

Example Using the formula for ϕ(n), we can see that ϕ(15) = ϕ(3 · 5) = (3 − 1)(5 − 1) = 8. Euler’s
theorem says that raising any element of Z∗15 to the 8 power results in 1: We can use Sage to
verify this:

231

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

sage: for i in range(15):

....: if gcd(i,15) == 1:

....: print("%d^8 mod 15 = %d" % (i, i^8 % 15))

....:

1^8 mod 15 = 1

2^8 mod 15 = 1

4^8 mod 15 = 1

7^8 mod 15 = 1

8^8 mod 15 = 1

11^8 mod 15 = 1

13^8 mod 15 = 1

14^8 mod 15 = 1

13.2 The RSA Function

The RSA function is de�ned as follows:

I Let p and q be distinct primes (later we will say more about how they are chosen),
and let N = pq. N is called the RSA modulus.

I Let e and d be integers such that ed ≡ϕ(N) 1. That is, e and d are multiplicative
inverses mod ϕ(N) — not mod N !

I The RSA function is: x 7→ xe % N , where x ∈ ZN .

I The inverse RSA function is: y 7→ yd % N , where x ∈ ZN .

Essentially, the RSA function (and its inverse) is a simple modular exponentiation. The
most confusing thing to remember about RSA is that e and d “live” in Z∗ϕ(N), while x and
y “live” in ZN .

x y

raise to e power (mod N)

raise to d power (mod N)

Let’s make sure the function we called the “inverse RSA function” is actually an inverse
of the RSA function. Let’s start with an example:

Example In Sage, we can sample a random prime between 1 and k by using random_prime(k). We use
it to sample the prime factors p and q:

sage: p = random_prime(10^5)

sage: q = random_prime(10^5)

sage: N = p*q

sage: N

36486589

232

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Then we can compute the exponents e and d . Recall that they must be multiplicative inverses
mod ϕ(N), so they cannot share any common factors with ϕ(N). An easy way to ensure this
is to choose e to be a prime:

sage: phi = (p-1)*(q-1)

sage: e = random_prime(phi)

sage: e

28931431

sage: d = 1/Mod(e,phi)

sage: d

31549271

We can now raise something to the e power and again to the d power:

sage: x = 31415926

sage: y = x^e % N

sage: y

1798996

sage: y^d % N

31415926

As you can see, raising to the e power and then d power (mod N) seems to bring us back to
where we started (x).

We can argue that raising-to-the-e-power and raising-to-the-d-power are inverses in
general: Since ed ≡ϕ(N) 1, we can write ed = tϕ(N) + 1 for some integer t . Then:

(xe)d = xed = x tϕ(N)+1 = (xϕ(N))tx ≡N 1tx = x

Note that we have used the fact that xϕ(N) ≡N 1 from Euler’s theorem.4

How [Not] to Exponentiate Huge Numbers

When you see an expression like “xe %N ”, you might be tempted to implement it with the
following algorithm:

NaiveExponentiate(x , e,N):
result = 1
for i = 1 to e: // compute xe

result = result × x
return result % N

While this algorithm would indeed give the correct answer, it is a really bad way of doing
it. In practice, we use RSA with numbers that are thousands of bits long. Suppose we
run the NaiveExponentiate algorithm with arguments x , e , and N which are around a
thousand bits each (so the magnitude of these numbers is close to 21000):

4However, see Exercise 13.15.

233

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

1. The algorithm will spend approximately 21000 iterations in the for-loop!

2. The algorithm computes xe as an integer �rst, and then reduces that integer mod
N . Observe that x2 is roughly 2000 bits long, x3 is roughly 3000 bits long, etc. So it
would take about 21000 · 1000 bits just to write down the integer xe .

As you can see, there is neither enough time nor storage capacity in the universe to use
this algorithm. So how can we actually compute values like xe % N on huge numbers?

1. Suppose you were given an integer x and were asked to compute x17. You can com-
pute it as:

x17 = x · x · x · · · x︸ ︷︷ ︸
16 multiplications

.

But a more clever way is to observe that:

x17 = x16 · x = (((x2)2)2)2 · x .

This expression can be evaluated with only 5 multiplications (squaring is just muli-
plying a number by itself).

More generally, you can compute an expression like xe by following the recurrence
below. The method is called exponentiation by repeated squaring, for reasons
that are hopefully clear:

xe =


1 if e = 0
(x

e
2)2 if e even
(x

e−1
2)2 · x if e odd

BetterExp(x , e):
if e = 0: return 1
if e even:

return BetterExp(x , e2)
2

if e odd:
return BetterExp(x , e−12)

2 · x

BetterExp divides the e argument by two (more or less) each time it recurses, until
reaching the base case. Hence, the number of recursive calls is O(log e). In each
recursive call there are only a constant number of multiplications (including squar-
ings). So overall this algorithm requires only O(log e) multiplications (compared to
e − 1 multiplications by just multiplying m by itself e times). In the case where
e ∼ 21000, this means only a few thousand multiplications.

2. We care about only xe % N , not the intermediate integer value xe . One of the most
fundamental features of modular arithmetic is that you can reduce any interme-
diate values mod N if you care about the �nal result only mod N .

Revisiting our previous example:

x17 % N = x16 · x % N = (((x2 % N)2 % N)2 % N)2 · x % N .

More generally, we can reduce all intermediate value mod N :

234

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

ModExp(x , e,N): // compute xe % N

if e = 0: return 1
if e even:

return ModExp(x , e2 ,N)
2 % N

if e odd:
return ModExp(x , e−12 ,N)

2 · x % N

This algorithm avoids the problem of computing the astronomically huge integer
xe . It never needs to store any value (much) larger than N .

Warning: Even this ModExp algorithm isn’t an ideal way to implement exponentiation for
cryptographic purposes. Exercise 13.10 explores some unfortunate properties of this exponen-
tiation algorithm.

Example Most math libraries implement exponentiation using repeated squaring. For example, you
can use Sage to easily calculate numbers with huge exponents:

sage: 427^31415926 % 100

89

However, this expression still tells Sage to compute 42731415926 as an integer, before reducing
it mod 100. As such, it takes some time to perform this computation.

If you try an expression like x^e % N with a larger exponent, Sage will give a memory
error. How can we tell Sage to perform modular reduction at every intermediate step during
repeated squaring? The answer is to use Sage’s Mod objects, for example:

sage: Mod(427,100)^314159265358979

63

This expression performs repeated squaring on the object Mod(427,100). Since a Mod-object’s
operations are all overloaded (to give the answer only mod n), this has the result of doing a
modular reduction after every squaring and multiplication. This expression runs instanta-
neously, even with very large numbers.

Security Properties & Discussion

RSA is what is called a trapdoor function.

I One user generates the RSA parameters (primarily N , e , and d) and makes N and e
public, while keeping d private.

I Functionality properties: Given only the public information N and e , it is easy to
compute the RSA function (x 7→ xe %N). Given the private information (d) it clearly
easy to compute the RSA inverse (y 7→ yd % N).

I Security property: Given only the public information, it should be hard to compute
the RSA inverse (y 7→ yd %N) on randomly chosen values. In other words, the only
person who is able to compute the RSA inverse function is the person who generated
the RSA parameters.

235

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

to-do The security property is not natural to express in our language of security de�nitions (li-
braries).

Currently the best known attacks against RSA (i.e., ways to compute the inverse RSA
function given only the public information) involve factoring the modulus. If we want to
ensure that RSA is secure as a trapdoor function, we must understand the state of the art
for factoring large numbers.

Before discussing the performance of factoring algorithms, remember that we measure
performance as a function of the length of the input — how many bits it takes to write
the input. In a factoring algorithm, the input is a large number N , and it takes roughly
n = log2 N bits to write down that number. We will discuss the running time of algorithms
as a function of n, not N . Just keep in mind the di�erence in cost between writing down a
1000-bit number (n = 1000) vs counting up to a 1000-bit number (N = 21000)

Everyone knows the “trial division” method of factoring: given a number N , check
whether i divides N , for every i ∈ {2, . . .

√
N }. This algorithm requires

√
N = 2n/2 divi-

sions in the worst case. It is an exponential-time algorithm since we measure performance
in terms of the bit-length n.

If this were the best-known factoring algorithm, then we would need to make N only
as large as 2256 to make factoring require 2128 e�ort. But there are much better factoring
algorithms than trial division. The fastest factoring algorithm today is called the General-

ized Number Field Sieve (GNFS), and its complexity is something like O
(
n
(n
logn)

1
3
)
. This is

not a polynomial-time algorithm, but it’s much faster than trial division.

Example Sage can easily factor reasonably large numbers. Factoring the following 200-bit RSAmodulus
on my modest computer takes about 10 seconds:

sage: p = random_prime(2^100)

sage: q = random_prime(2^100)

sage: N = p*q

sage: factor(N)

206533721079613722225064934611 * 517582080563726621130111418123

As of January 2020, the largest RSA modulus that has been (publically) factored is a
795-bit modulus.5 Factoring this number required the equivalent of 900 CPU-core-years,
or roughly 266 total clock cycles.

All of this is to say, the numbers involved in RSA need to be quite large to resist
factoring attacks (i.e., require 2128 e�ort for state-of-the-art factoring algorithms). Current
best practices suggest to use 2048- or 4096-bit RSA moduli, meaning that p and q are each
1024 or 2048 bits.

to-do “What about quantum computers?” is a common FAQ that I should address here.

5
h�ps://en.wikipedia.org/wiki/RSA_numbers#RSA-240

236

https://en.wikipedia.org/wiki/RSA_numbers#RSA-240

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.3 Digital Signatures

MACs are a cryptographic primitive that provide authenticity. A valid MAC tag on m is
“proof” that someone who knows the key has vouched form. MACs are a symmetric-key
primitive, in the sense that generating a MAC tag and verifying a MAC tag both require
the same key (in fact, a tag is veri�ed by re-computing it).

Digital signatures are similar to MACs, but with separate keys for signing and veri-
�cation. A digital signature scheme consists of the following algorithms:

I KeyGen: outputs a pair of keys (sk,vk), where sk is the signing key and vk is the
veri�cation key.

I Sign: takes the signing key sk and a message m as input, and outputs a signature
σ .

I Ver: takes the veri�cation key vk , message m, and a potential signature σ as input;
outputs a boolean.

If indeed σ is an output of Sign(sk,m), then Ver(vk,m,σ) should output true. Intuitively,
it should be hard for an attacker to �nd any other (m,σ) pairs that cause Ver to output
true.

The idea behind digital signatures is to make vk public. In other words, anyone (even
the attacker) should be able to verify signatures. But only the holder of sk (the person who
generated vk and sk) should be able to generate valid signatures. Furthermore, this guar-
antee should hold even against an attacker who sees many examples of valid signatures.
The attacker should not be able to generate new valid signatures.

We formalize this security property in a similar way that we formalized the security
of MACs: “only the secret-key holder can generate valid tags, even after seeing chosen
examples of valid tags.”

Definition 13.6 Let Σ be a signature scheme. We say that Σ is a secure signature if LΣ
sig-real

∼∼∼ L
Σ
sig-fake

,
where:

LΣ
sig-real

(vk, sk) ← Σ.KeyGen

getvk():
return vk

getsig(m):
return Σ.Sign(sk,m)

versig(m,σ):
return Σ.Ver(vk,m,σ)

LΣ
sig-fake

(vk, sk) ← Σ.KeyGen

S := ∅

getvk():
return vk

getsig(m):
σ := Σ.Sign(sk,m)
S := S ∪ {(m,σ)}
return σ

versig(m,σ):

return (m,σ)
?
∈ S

237

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Similar to the security de�nition for MACs, the libraries di�er only in how they ver-
ify signatures provided by the attacker (versig). If the attacker can generate a message-
signature pair (m,σ) that (1) veri�es correctly, but (2) was not generated previously by the
library itself, then versig from the Lsig-real library will return true, while the Lsig-fake li-
brary would return false. By asking for the libraries to be indistinguishable, we are really
asking that the attacker cannot �nd any such message-signature pair (forgery).

The main di�erence to the MAC de�nition is that, unlike for the MAC setting, we
intend to make a veri�cation key public. The library can run (vk, sk) ← KeyGen, but these
values remain private by default. To make vk public, we explicitly provide an accessor
getvk to the attacker.

“Textbook” RSA Signatures

Signatures have an asymmetry: everyone should be able to verify a signature, but only the
holder of the signing key should be able to generate a valid signature. The RSA function
has a similar asymmetry: if N and e are public, then anyone can raise things to the e power,
but only someone with d can raise things to the d power.

This similarity suggests that we can use RSA for signatures in the following way:

I The veri�cation key is (N , e) and the signing key is (N ,d), where these values have
the appropriate RSA relationship.

I A signature of message m (here m is an element of ZN) is the value σ = md % N .
Intuitively, only someone with the signing key can generate this value for a given
m.

I To verify a signature σ on a message m, our goal is to check whether σ ≡N md .
However, we are given only N and e , not d . Consider raising both sides of this
equation to the e power:

σ e ≡N (m
d)e ≡N m

The second equality is from the standard RSA property. Now this check can be done
given only the public information N and e .

A formal description of this scheme is given below:

Construction 13.7

(Textbook RSA)

The key generation algorithm is not listed here, but N , e,d are generated in the usual way for
RSA. The signing key is sk = (N ,d) and the veri�cation key is vk = (N , e).

Sign

(
sk = (N ,d),m

)
:

returnmd % N

Ver

(
vk = (N , e),m,σ

)
:

m′ := σ e % N

returnm
?
=m′

Unfortunately, textbook RSA signatures are useful only as a �rst intuition. They are
not secure! A simple attack is the following:

Suppose an attacker knows the veri�cation key (N , e) and sees a valid signature σ ≡N
md for some messagem. Then σ 2 is also a valid signature for the messagem2, since:

σ 2 ≡n (m
d)2 = (m2)d

238

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

The attacker can easily generate a forged signature on a new message m2, making the
scheme insecure.

Hashed RSA Signatures

The problem with textbook RSA signatures is that the signatures and plaintexts had a
very strong algebraic relationship. Squaring the signature had the e�ect of squaring the
underlying message. One way to �x the problem is to “break” this algebraic relationship.
Hashed RSA signatures break the algebraic structure by applying the RSA function not to
m directly, but to H (m), where H is a suitable hash function (with outputs interpreted as
elements of ZN).

Construction 13.8

(Textbook RSA) Sign

(
sk = (N ,d),m

)
:

return H (m)d % N

Ver

(
vk = (N , e),m,σ

)
:

y := σ e % N

return H (m)
?
= y

Let’s see how this change thwarts the attack on textbook signatures. If σ is a valid
signature of m, we have σ ≡N H (m)d . Squaring both sides leads to σ 2 ≡N (H (m)

2)d . Is
this the valid signature of any m′? An attacker would have to identify some m′ that has
H (m′) = H (m)2. If the hash function is a good one, then this should be hard.

Of course, this is not a formal proof. It is possible to formally prove the security of
hashed RSA signatures. The precise statement of security is: “if RSA is a secure trap-
door function and H is modeled as a random oracle, then hashed RSA signatures are a
secure signature scheme.” Since we have not given formal de�nitions for either trapdoor
functions or random oracles, we won’t see the proof in this book.

to-do Write a chapter on random oracle and other idealized models.

239

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.4 Chinese Remainder Theorem

When doing arithmetic mod N , we can sometimes use knowledge of the factors N = pq
to speed things up. This section discusses the math behind these speedups.

History. In the Sunzi Suanjing, written some time around the 4th century ce, Chinese
mathematician Sunzi posed an interesting puzzle involving remainders:

“We have a number of things, but we do not know exactly howmany. If we count
them by threes we have two left over. If we count them by �ves we have three
left over. If we count them by sevens we have two left over. How many things are
there?”6

Sunzi’s puzzle is the �rst known instance of a system of simultaneous equations involving
modular arithmetic: In our notation, he is asking us to solve for x in the following system
of congruences:

x ≡3 2
x ≡5 3
x ≡7 2

We can solve such systems of equations using what is called (in the West) the Chinese
Remainder Theorem (CRT). Below is one of the simpler formations of the Chinese Re-
mainder Theorem, involving only two equations/moduli (unlike the example above, which
has three moduli 3, 5, and 7):

Theorem 13.9

(CRT)

Suppose gcd(r , s) = 1. Then for all integers u,v , there is a solution for x in the following
system of equations:

x ≡r u

x ≡s v

Furthermore, this solution is unique modulo rs .

Proof Since gcd(r , s) = 1, we have by Bezout’s theorem that 1 = ar + bs for some integers a and
b. Furthermore, b and s are multiplicative inverses modulo r . Now choose x = var + ubs .
Then,

x = var + ubs ≡r (va)0 + u(s−1s) = u

So x ≡r u, as desired. Using similar reasoning mod s , we can see that x ≡s v , so x is a
solution to both equations.

Now we argue that this solution is unique modulo rs . Suppose x and x ′ are two solu-
tions to the system of equations, so we have:

x ≡r x
′ ≡r u

6Chinese text is from an old manuscript of Sunzi Suanjing, but my inability to speak the language prevents
me from identifying the manuscript more precisely. English translation is from Joseph Needham, Science and
Civilisation in China, vol. 3: Mathematics and Sciences of the Heavens and Earth, 1959.

240

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

x ≡s x
′ ≡s v

Since x ≡r x ′ and x ≡s x
′, it must be that x −x ′ is a multiple of r and a multiple of s . Since

r and s are relatively prime, their least common multiple is rs , so x −x ′ must be a multiple
of rs . Hence, x ≡r s x ′. So any two solutions to this system of equations are congruent
mod rs . �

Example Sage implements the crt function to solve for x in these kinds of systems of equations. Suppose
we want to solve for x :

x ≡427 42
x ≡529 123

In Sage, the solution can be found as follows:

sage: crt(42,123, 427,529)

32921

We can check the solution:

sage: 32921 % 427

42

sage: 32921 % 529

123

CRT Encodings Preserve Structure

Let’s call (u,v) ∈ Zr × Zs the CRT encoding of x ∈ Zr s if they satisfy the usual relation-
ship:

x ≡r u

x ≡s v

We can convert any x ∈ Zr s into its CRT encoding quite easily, via x 7→ (x % r ,x % s).
The Chinese Remainder Theorem says that any (u,v) ∈ Zr × Zs is a valid CRT encoding
of a unique x ∈ Zr s ; and the proof of the theorem shows how to convert from the CRT
encoding into the “usual Zr s encoding.”

The amazing thing about these CRT encodings is that they preserve all sorts of arith-
metic structure.

Claim 13.10 If (u,v) is the CRT encoding ofx , and (u ′,v ′) is the CRT encoding ofx ′, then (u+u ′%r ,v+v ′%s)
is the CRT encoding of x + x ′ % rs .

Example Taking r = 3 and s = 5, let’s write down the CRT encodings of every element in Z15. In this
table, every column contains x and its CRT encoding (u,v):

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
u 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
v 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

241

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Highlight the columns for x = 3 and x ′ = 7 and their sum x + x ′ = 10.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
u 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
v 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Focusing on only the highlighted cells, the top row shows a true addition expression 3+ 7 ≡15
10; the second row shows a true addition expression 0 + 1 ≡3 1; the third row shows a true
addition expression 3 + 2 ≡5 0.

This pattern holds for any x and x ′, and I encourage you to try it!

As if that weren’t amazing enough, the same thing holds for multiplication:

Claim 13.11 If (u,v) is the CRT encoding of x , and (u ′,v ′) is the CRT encoding of x ′, then (u ·u ′%r ,v ·v ′%s)
is the CRT encoding of x · x ′ % rs .

Example Let’s return to the r = 3, s = 5 setting for CRT and highlight x = 6, x ′ = 7, and their product
x · x ′ ≡15 12.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
u 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
v 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

The top row shows a true multiplication expression 6 · 7 ≡15 12; the second row shows a true
multiplication expression 0 · 1 ≡3 0; the third row shows a true multiplication expression
1 · 2 ≡5 2.

This pattern holds for any x and x ′, and I encourage you to try it!

The CRT suggests a di�erent, perhaps more indirect, way to do things mod rs . Suppose
x has CRT encoding (u,v) and x ′ has CRT encoding (u ′,v ′), and we want to compute x +y
mod rs . One wild idea is to �rst directly compute the CRT encoding of this answer, and then
convert that encoding to the normal integer representation in Zr s .

In this case, we know that the answer x+x ′ has the CRT encoding (u+u ′%r ,v+v ′%s).
But this is the same as (x +x ′%r ,x +x ′%s)— do you see why? So, to add x +x ′mod rs , we
just need to add x + x ′ mod r , and then add x + x ′ mod s . This gives us the CRT encoding
of the answer we want, and we can convert that CRT encoding back into a normal Zr s -
integer.

The same idea works for multiplication as well, giving us the following:

CRT method for doing some operation[s] mod rs

1. Do the operation[s] you want, but mod r instead of mod rs .

2. Do the operation[s] you want, but mod s instead of mod rs .

3. Those two results are the CRT encoding of the �nal answer, so convert them
back to the normal representation.

242

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Example Let’s take the example r = 3359 and s = 2953, which are relatively prime (so the CRT applies).
Suppose we want to compute 3141592 + 6535897 % rs . Doing it the usual way in Sage looks
like this:

sage: r = 3359

sage: s = 2953

sage: (3141592 + 6535897) % (r*s)

9677489

Doing it in the CRT way looks like this.

sage: u = (3141592 + 6535897) % r

sage: v = (3141592 + 6535897) % s

sage: crt(u,v, r,s)

9677489

Both methods give the same answer!

Application to RSA

You might be wondering what the point of all of this is.7 The CRT method seems like a
very indirect and wasteful way to compute anything. This impression might be true for
simple operations like addition and single multiplications. However, the CRT method is
faster for exponentiation mod N , which is the main operation in RSA!

Example In Sage, we can do basic exponentiation mod n as follows:

sage: def modexp(x,e,n): # x^e mod n

....: return Mod(x,n)^e

If we are working over an RSA modulus and know its factorization p×q, then we use the CRT
method for exponentiation mod pq as follows. We simply do the exponentiation mod p and
(separately) mod q, then use the crt function to convert back to Zpq .

sage: def crtmodexp(x,e,p,q): # x^e mod pq, using CRT speedup

....: u = Mod(x,p)^e

....: v = Mod(x,q)^e

....: return crt(u.lift(),v.lift(),p,q)

We need to use u.lift() and v.lift() to convert u and v from Mod-objects into integers,
because that is what crt expects.

We can use both methods to perform an exponentiation, and measure how long it takes
with the timeit function. In this example, N is about 2000 bits long, and the di�erence in
speed is noticeable:

7I’m talking about the CRT method for arithmetic mod rs , not life in general.

243

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

sage: p = random_prime(2^1000)

sage: q = random_prime(2^1000)

sage: N = p*q

sage: x = 12345678901234567

sage: e = randint(0,N) # random integer between 0 & N-1

sage: timeit(’modexp(x,e,N)’)

125 loops, best of 3: 5.34 ms per loop

sage: timeit(’crtmodexp(x,e,p,q)’)

125 loops, best of 3: 2.86 ms per loop

And just for good measure, we can check that both approaches give the same answer:

sage: modexp(x,e,N) == crtmodexp(x,e,p,q)

True

To understand why the CRT method is faster, it’s important to know that the cost
of standard modular exponentiation over a k-bit modulus is O(k3). For simplicity, let’s
pretend that exponentiation takes exactly k3 steps. Suppose p and q are each k bits long,
so that the RSA modulus N is 2k bits long. Hence, a standard exponentiation mod N takes
(2k)3 = 8k3 steps.

With the CRT method, we do an exponentiation mod p and an exponentiation mod q.
Each of these exponentiations takes k3 steps, since p and q are only k bits long. Overall,
we are only doing 2k3 steps in this approach, which is 4× faster than the standard expo-
nentiation mod N . In this simple analysis, we are not counting the cost of converting the
CRT encoding back to the typical mod-N representation. But this cost is much smaller
than the cost of an exponentiation (both in practice and asymptotically).

It’s worth pointing out that this speedup can only be done for RSA signing, and not
veri�cation. In order to take advantage of the CRT method to speed up exponentiation
mod N , it’s necessary to know the prime factors p and q. Only the person who knows the
signing key knows these factors.

13.5 The Hardness of Factoring N

As previously mentioned, the best known way to break the security of RSA as a trapdoor
function (i.e., to compute the inverse RSA function given only the public information N
and e) involves factoring the RSA modulus.

Factoring integers (or, more speci�cally, factoring RSA moduli) is believed to be a hard
problem for classical computers. In this section we show that some other problems related
to RSA are “as hard as factoring.” What does it mean for a computational problem to be
“as hard as factoring?” More formally, in this section we will show the following:

Theorem 13.12 Either all of the following problems can be solved in polynomial-time, or none of them can:

1. Given an RSA modulus N = pq, compute its factors p and q.

2. Given an RSA modulus N = pq compute ϕ(N) = (p − 1)(q − 1).

244

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

3. Given an RSA modulus N = pq and value e , compute the corresponding d (satisfying
ed ≡ϕ(N) 1).

4. Given an RSA modulus N = pq, �nd any x .N ±1 such that x2 ≡N 1.

To prove the theorem, we will show:

I if there is an e�cient algorithm for (1), then we can use it as a subroutine to con-
struct an e�cient algorithm for (2). This is straight-forward: if you have a subrou-
tine factoring N into p and q, then you can call the subroutine and then compute
(p − 1)(q − 1).

I if there is an e�cient algorithm for (2), then we can use it as a subroutine to con-
struct an e�cient algorithm for (3). This is also straight-forward: if you have a
subroutine computing ϕ(N) given N , then you can compute d exactly how it is
computed in the key generation algorithm.

I if there is an e�cient algorithm for (3), then we can use it as a subroutine to con-
struct an e�cient algorithm for (4).

I if there is an e�cient algorithm for (4), then we can use it as a subroutine to con-
struct an e�cient algorithm for (1).

Below we focus on the �nal two implications.

Using square roots of unity to factor N

Problem (4) of Theorem 13.12 concerns a new concept known as square roots of unity:

Definition 13.13

(Sqrt of unity)

x is a square root of unity modulo N if x2 ≡N 1. If x .N 1 and x .N −1, then we say
that x is a non-trivial square root of unity.

Since (±1)2 = 1 over the integers, it is also true that (±1)2 ≡N 1. In other words, ±1 are
always square roots of unity modulo N , for any N . But some values of N have even more
square roots of unity. If N is the product of distinct odd primes, then N has 4 square roots
of unity: two trivial and two non-trivial ones (and you are asked to prove this fact in an
exercise).

Claim 13.14 Suppose there is an e�cient algorithm for computing nontrivial square roots of unity mod-
ulo N . Then there is an e�cient algorithm for factoring N . (This is the (4) ⇒ (1) step in
Theorem 13.12.)

Proof The reduction is rather simple. Suppose ntsru is an algorithm that on input N returns
a non-trivial square root of unity modulo N . Then we can factor N with the following
algorithm:

factor(N):
x := ntsru(N)
return gcd(N ,x + 1) and gcd(N ,x − 1)

245

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

The algorithm is simple, but we must argue that it is correct. When x is a nontrivial square
root of unity modulo N , we have the following:

x2 ≡pq 1 ⇒ pq | x2 − 1 ⇒ pq | (x + 1)(x − 1);
x .pq 1 ⇒ pq - (x − 1);
x .pq −1 ⇒ pq - (x + 1).

The prime factorization of (x +1)(x −1) contains a factor of p and a factor of q. But neither
x + 1 nor x − 1 contain factors of both p and q. Hence x + 1 and x − 1 must each contain
factors of exactly one of {p,q}. In other words, {gcd(pq,x − 1), gcd(pq,x + 1)} = {p,q}.�

Finding square roots of unity

Claim 13.15 If there is an e�cient algorithm for computing d ≡ϕ(N) e−1 given N and e , then there is an
e�cient algorithm for computing nontrivial square roots of unity modulo N . (This is the (3)
⇒ (4) step in Theorem 13.12.)

Proof Suppose we have an algorithm find_d that on input (N , e) returns the corresponding
exponent d . Then consider the following algorithm which uses find_d as a subroutine:

sru(N):
choose e as a random n-bit prime
d := find_d(N , e)
write ed − 1 = 2sr , with r odd
// i.e., factor out as many 2s as possible
w ← ZN
if gcd(w,N) , 1: //w < Z∗N

use gcd(w,N) to factor N = pq
compute a nontrivial square root of unity using p & q

x := wr % N
if x ≡N 1 then return 1
for i = 0 to s:

if x2 ≡N 1 then return x
x := x2 % N

There are several return statements in this algorithm, and it should be clear that all of
them indeed return a square root of unity. Furthermore, the algorithm does eventually
return within the main for-loop, because x takes on the sequence of values:

wr ,w2r ,w4r ,w8r , . . . ,w2s r

and the �nal value of that sequence satis�es

w2s r = wed−1 ≡N w (ed−1)%ϕ(N) = w1−1 = 1.

Although we don’t prove it here, it is possible to show that the algorithm returns a square
root of unity chosen uniformly at random from among the four possible square roots of
unity. So with probability 1/2 the output is a nontrivial square root. We can repeat this
basic process n times, and eventually encounter a nontrivial square root of unity with
probability 1 − 2−n . �

246

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Exercises

13.1. Prove by induction the correctness of the extgcd algorithm. That is, whenever
extgcd(x ,y) outputs (d,a,b), we have gcd(x ,y) = d = ax + by. You may use the fact
that the original Euclidean algorithm correctly computes the GCD.

13.2. Prove that if дa ≡n 1 and дb ≡n 1, then дgcd(a,b) ≡n 1.

13.3. Prove that gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1.

13.4. Prove that xa % n = xa%ϕ(n) % n for any x ∈ Z∗n . In other words, when working modulo n,
you can reduce exponents modulo ϕ(n).

13.5. How many fractions a/b in lowest terms are there, where 0 < a/b < 1 and b 6 n? For
n = 5 the answer is 9 since the relevant fractions are:

1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5

Write a formula in terms of n. What is the answer for n = 100?

Hint:

Howmanyaretherewithdenominatorexactlyequalton(intermsofn)?

13.6. In this problem we determine the e�ciency of Euclid’s GCD algorithm. Since its input
is a pair of numbers (x ,y), let’s call x + y the size of the input. Let Fk denote the kth
Fibonacci number, using the indexing convention F0 = 1; F1 = 2. Prove that (Fk , Fk−1) is
the smallest-size input on which Euclid’s algorithm makes k recursive calls.

Hint:

Useinductiononk.

Note that the size of input (Fk , Fk−1) is Fk+1, and recall that Fk+1 ≈ ϕk+1, where ϕ ≈
1.618 . . . is the golden ratio. Thus, for any inputs of size N ∈ [Fk , Fk+1), Euclid’s algorithm
will make less than k 6 logϕ N recursive calls. In other words, the worst-case number
of recursive calls made by Euclid’s algorithm on an input of size N is O(logN), which is
linear in the number of bits needed to write such an input.8

13.7. Consider the following symmetric-key encryption scheme with plaintext space M =

{0, 1}λ . To encrypt a message m, we “pad” m into a prime number by appending a zero
and then random non-zero bytes. We then mulitply by the secret key. To decrypt, we
divide o� the key and then strip away the “padding.”

The idea is that decrypting a ciphertext without knowledge of the secret key requires
factoring the product of two large primes, which is a hard problem.

8A more involved calculation that incorporates the cost of each division (modulus) operation shows the
worst-case overall e�ciency of the algorithm to be O(log2 N) — quadratic in the number of bits needed to
write the input.

247

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

KeyGen:
choose random λ-bit prime k
return k

Dec(k, c):
m′ := c/k
whilem′ not a multiple of 10:
m′ := bm′/10c

returnm′/10

Enc(k,m ∈ {0, 1}λ):
m′ := 10 ·m
whilem′ not prime:
d ← {1, . . . , 9}
m′ := 10 ·m′ + d

return k ·m′

Show an attack breaking CPA-security of the scheme. That is, describe a distinguisher and
compute its bias.

Hint:

Askforanytwociphertexts.

13.8. Explain why the RSA exponents e and d must always be odd numbers.

13.9. Why must p and q be distinct primes? Why is it a bad idea to choose p = q?

13.10. A simple power analysis (SPA) attack is a physical attack on a computer, where the
attacker monitors precisely how much electrical current the processor consumes while
performing a cryptographic algorithm. In this exercise, we will consider an SPA attack
against the ModExp algorithm shown in Section 13.2.
The ModExp algorithm consists mainly of squarings and multiplications. Suppose that by
monitoring a computer it is easy to tell when the processor is running a squaring vs. a
multiplication step (this is a very realistic assumption). This assumption is analogous to
having access to the printed output of this modi�ed algorithm:

ModExp(m, e,N): // computeme % N

if e = 0: return 1
if e even:
res := ModExp(m, e2 ,N)

2 % N
print “square”

if e odd:
res := ModExp(m, e−12 ,N)

2 ·m % N
print “square”
print “mult”

return res

Describe how the printed output of this algorithm lets the attacker completely learn the
value e . Remember that in RSA it is indeed the exponent that is secret, so this attack leads
to key recovery for RSA.

Hint:

Thinkaboutwhat“e/2,”“(e−1)/2,”and“eisodd”mean,intermsofthebitsofe.

13.11. The Chinese Remainder Theorem states that there is always a solution for x in the follow-
ing system of equations, when gcd(r , s) = 1:

x ≡r u

248

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

x ≡s v

Give an example u, v , r , s , with gcd(r , s) , 1 for which the equations have no solution.
Explain why there is no solution.

13.12. Prove Claims 13.10 and 13.11.

13.13. Consider a rectangular grid of points, with width w and height h. Starting in the lower-
left of the grid, start walking diagonally northeast. When you fall o� end the grid, wrap
around to the opposite side (i.e., Pac-Man topology). Below is an example of the �rst few
steps you take on a grid with w = 3 and h = 5:

1

2

33

4

5

5

Show that if gcd(w,h) = 1 then you will eventually visit every point in the grid.

Hint:

Deriveaformulaforthecoordinatesofthepointyoureachafternsteps.
13.14. Suppose (u,v) ∈ Zr × Zs is a CRT encoding of x ∈ Zr s . Prove that x ∈ Z∗r s if and only if

u ∈ Z∗r and v ∈ Z∗s .

Note: this problem implies that ϕ(rs) = ϕ(r)ϕ(s) when gcd(r , s) = 1. A special case of this
identity is the familiar expression ϕ(pq) = (p − 1)(q − 1) when p and q are distinct primes.

13.15. There is a bug (or at least an oversight) in the proof that x 7→ xe %N and y 7→ yd %N are
inverses. We used the fact that xϕ(N) ≡N 1, but this is only necessarily true for x ∈ Z∗N .
Using the Chinese Remainder Theorem, show that the RSA function and its inverse are
truly inverses, even when applied to x < Z∗N .

13.16. We are supposed to choose RSA exponents e and d such that ed ≡ϕ(N) 1. Let N = pq and
de�ne the value L = lcm(p − 1,q − 1). Suppose we choose e and d such that ed ≡L 1.
Show that RSA still works for this choice of e and d — in other words, x 7→ xe % N and
y 7→ yd % N are inverses.

Hint:

You’llhavetousetheChineseRemainderTheorem.

? 13.17. If ye ≡N x then we call y an “e-th root” of x . One way to think about RSA is that raising
something to the d power is equivalent to computing an e-th root. Our assumption about
RSA is that it’s hard to compute e-th roots given only public e and N .

In this problem, show that if you are given an a-th root of x and b-th root of the same x ,
and gcd(a,b) = 1, then you can easily compute an ab-th root of x .

More formally, given x ,y, z and N where ya ≡N x and zb ≡N x , show how to e�ciently
compute a value w such that wab ≡N x .

249

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Compute w for the following values (after verifying that y is an a-th root and z is a b-th
root of x mod N):

N = 318753895014839414391833197387495582828703628009180678460009

x = 183418622076108277295248802695684859123490073011079896375192

a = 56685394747281296805145649774065693442016512301628946051059

b = 178205100585526989632998577959780764157496762062661723119813

y = 185575838649944725271855413520846311652963277243867273346885

z = 20697550065842164169278024507041536884260713996371572807344

Hint:

Itisimportantthatgcd(a,b)=1.UseBezout’stheorem.

13.18. Suppose Alice uses the CRT method to sign some message m in textbook RSA. In other
words, she computesmd %p, thenmd %q, and �nally converts this CRT encoding back to
ZN . But suppose Alice is using faulty hardware (or Eve is bombarding her hardware with
electromagnetic pulses), so that she computes the wrong value mod q. The rest of the
computation happens correctly, and Alice publishesm and the (incorrect) signature σ .

Show that, no matter whatm is, and no matter what Alice’s computational error was, Eve
can factor N (upon seeingm, σ , and the public RSA information N and e).

Hint:

m≡pσebutm.qσe.

13.19. (a) Show that given an RSA modulus N and ϕ(N), it is possible to factor N easily.
Hint:

Youhavetwoequations(involvingϕ(N)andN)andtwounknowns(pandq).

(b) Write a Sage function that takes as input an RSA modulus N and ϕ(N) and outputs
the prime factors of N . Use it to factor the following 2048-bit RSA modulus. Note: take
care that there are no precision issues in how you solve the problem; double-check
your factorization!

N = 133140272889335192922108409260662174476303831652383671688547009484

253235940586917140482669182256368285260992829447207980183170174867

620358952230969986447559330583492429636627298640338596531894556546

013113154346823212271748927859647994534586133553218022983848108421

465442089919090610542344768294481725103757222421917115971063026806

587141287587037265150653669094323116686574536558866591647361053311

046516013069669036866734126558017744393751161611219195769578488559

882902397248309033911661475005854696820021069072502248533328754832

698616238405221381252145137439919090800085955274389382721844956661

1138745095472005761807

phi = 133140272889335192922108409260662174476303831652383671688547009484

253235940586917140482669182256368285260992829447207980183170174867

620358952230969986447559330583492429636627298640338596531894556546

013113154346823212271748927859647994534586133553218022983848108421

465442089919090610542344768294481725103757214932292046538867218497

635256772227370109066785312096589779622355495419006049974567895189

687318110498058692315630856693672069320529062399681563590382015177

322909744749330702607931428154183726552004527201956226396835500346

779062494259638983191178915027835134527751607017859064511731520440

2981816860178885028680

250

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.20. True or false: if x2 ≡N 1 then x ∈ Z∗N . Prove or give a counterexample.

13.21. Discuss the computational di�culty of the following problem:

Given an integer N , �nd a nonzero element of ZN \ Z∗N .

If you can, relate its di�culty to that of other problems we’ve discussed (factoring N or
inverting RSA).

13.22. (a) Show that it is possible to e�ciently compute all four square roots of unity modulo
pq, given p and q.

Hint:

CRT!

(b) Implement a Sage function that takes distinct primes p and q as input and returns the
four square roots of unity modulo pq. Use it to compute the four square roots of unity
modulo

1052954986442271985875778192663 × 611174539744122090068393470777.

? 13.23. Show that, conditioned on w ∈ Z∗N , the SqrtUnity subroutine outputs a square root of
unity chosen uniformly at random from the 4 possible square roots of unity.

Hint:

UsetheChineseRemainderTheorem.

13.24. Suppose N is an RSA modulus, and x2 ≡N y2, but x .N ±y. Show that N can be e�ciently
factored if such a pair x and y are known.

13.25. Why are ±1 the only square roots of unity modulo p, when p is an odd prime?

13.26. When N is an RSA modulus, why is squaring modulo N a 4-to-1 function, but raising to
the e th power modulo N is 1-to-1?

13.27. Implement a Sage function that e�ciently factors an RSA modulus N , given only N , e ,
and d . Use your function to factor the following 2048-bit RSA modulus.

N = 157713892705550064909750632475691896977526767652833932128735618711

213662561319634033137058267272367265499003291937716454788882499492

311117065951077245304317542978715216577264400048278064574204140564

709253009840166821302184014310192765595015483588878761062406993721

851190041888790873152584082212461847511180066690936944585390792304

663763886417861546718283897613617078370412411019301687497005038294

389148932398661048471814117247898148030982257697888167001010511378

647288478239379740416388270380035364271593609513220655573614212415

962670795230819103845127007912428958291134064942068225836213242131

15022256956985205924967

e = 327598866483920224268285375349315001772252982661926675504591773242

501030864502336359508677092544631083799700755236766113095163469666

905258066495934057774395712118774014408282455244138409433389314036

198045263991986560198273156037233588691392913730537367184867549274

682884119866630822924707702796323546327425328705958528315517584489

590815901470874024949798420173098581333151755836650797037848765578

433873141626191257009250151327378074817106208930064676608134109788

251

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

601067077103742326030259629322458620311949453584045538305945217564

027461013225009980998673160144967719374426764116721861138496780008

6366258360757218165973

d = 138476999734263775498100443567132759182144573474474014195021091272

755207803162019484487127866675422608401990888942659393419384528257

462434633738686176601555755842189986431725335031620097854962295968

391161090826380458969236418585963384717406704714837349503808786086

701573765714825783042297344050528898259745757741233099297952332012

749897281090378398001337057869189488734951853748327631883502135139

523664990296334020327713900408683264232664645438899178442633342438

198329983121207315436447041915897544445402505558420138506655106015

215450140256129977382476062366519087386576874886938585789874186326

69265500594424847344765

13.28. In this problem we’ll see that it’s bad to choose RSA prime factors p and q too close to-
gether.

(a) Let N = pq be an RSA modulus. Show that if you know N and δ = |p − q | then you
can e�ciently factor N .

(b) Alice generated the following RSA modulus N = pq and lets you know that |p − q | <
10000. Factor N :

N = 874677518388996663638698301429866315858010681593301504361505917406

679600338654753978646639928231278257025792316921962329748948203153

633013718175380969169006125249183547099230845322374618855425387176

952865483432804575895177869626746459878695728149786382697571962961

898331255405534657194681056148437649091612403258304084081171824215

469594984981192162710052121535309254024720635781955739713239334398

494465828323810812843582187587256744901184016546638718414715249093

757039375585896257839327987501216755865353444704506441078034811012

930282857089819030160822729139768982546143104625315700571887037795

31855302859423676881

13.29. Here is a slightly better method to factor RSA moduli whose factors are too close together.
As before, let N = pq.

(a) De�ne t = (p + q)/2. Note that when p and q are close, t is not much larger than
√
N .

Show that:
I t2 − N is a perfect square.
I Given t , it is possible to e�ciently factor N .

Hint:

Writet2−N=s2forsomes.

(b) Write a Sage function that factors RSA moduli whose prime factors are close. Use it
to factor the following 2048-bit number. How close were the factors (how large was
|p − q |)?

Hint: Sagehasanis_squaremethod.Also,besuretodoexactsquarerootsovertheintegers,not
thereals.

N = 514202868664266501986736340226343880193216864011643244558701956114

553317880043289827487456460284103951463512024249329243228109624011

252

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

915392411888724026403127686707255825056081890692595715828380690811

131686383180282330775572385822102181209569411961125753242467971879

131305986986525600110340790595987975345573842266766492356686762134

653833064511337433089249621257629107825681429573934949101301135200

918606211394413498735486599678541369375887840013842439026159037108

043724221865116794034194812236381299786395457277559879575752254116

612726596118528071785474551058540599198869986780286733916614335663

3723003246569630373323

253

14 Di�ie-Hellman Key Agreement

14.1 Cyclic Groups

Definition 14.1 Let д ∈ Z∗n . De�ne 〈д〉n = {д
i % n | i ∈ Z}, the set of all powers of д reduced mod n. Then д

is called a generator of 〈д〉n , and 〈д〉n is called the cyclic group generated by д mod n.
If 〈д〉n = Z∗n , then we say that д is a primitive root mod n.

The de�nition allows the generator д to be raised to a negative integer. Since д ∈ Z∗n ,
it is guaranteed that д has a multiplicative inverse mod n, which we can call д−1. Then д−i

can be de�ned as д−i def
= (д−1)i . All of the usual laws of exponents hold with respect to

this de�nition of negative exponents.

Example Taking n = 13, we have:

〈1〉13 = {1}
〈2〉13 = {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7} = Z∗13
〈3〉13 = {1, 3, 9}

Thus 2 is a primitive root modulo 13. Each of the groups {1}, Z∗13, {1, 3, 9} is a cyclic group
under multiplication mod 13.

A cyclic group may have more than one generator, for example:

〈3〉13 = 〈9〉13 = {1, 3, 9}

Similarly, there are four primitive roots modulo 13 (equivalently, Z∗13 has four di�erent gen-
erators); they are 2, 6, 7, and 11.

Not every integer has a primitive root. For example, there is no primitive root modulo
15. However, when p is a prime, there is always a primitive root modulo p (and so Z∗p is a
cyclic group).

Let us write G = 〈д〉 = {дi | i ∈ Z} to denote an unspeci�ed cyclic group generated by
д. The de�ning property of G is that each of its elements can be written as a power of д.
From this we can conclude that:

I Any cyclic group is closed under multiplication. That is, take any X ,Y ∈ G; then
it must be possible to write X = дx and Y = дy for some integers x ,y. Using the
multiplication operation of G, the product is XY = дx+y , which is also in G.

I Any cyclic group is closed under inverses. Take any X ∈ G; then it must be possible
to write X = дx for some integer x . We can then see that д−x ∈ G by de�nition, and
д−xX = д−x+x = д0 is the identity element. So X has a multiplicative inverse (д−x)
in G.

These facts demonstrate that G is indeed a group in the terminology of abstract algebra.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 14. DIFFIE-HELLMAN KEY AGREEMENT

Discrete Logarithms

It is typically easy to compute the value of дx in a cyclic group, given д and x . For ex-
ample, when using a cyclic group of the form Z∗n , we can easily compute the modular
exponentiation дx % n using repeated squaring.

The inverse operation in a cyclic group is called the discrete logarithm problem:

Definition 14.2

(Discrete Log)

The discrete logarithm problem is: givenX ∈ 〈д〉, determine a number x such thatдx = X .
Here the exponentiation is with respect to the multiplication operation in G = 〈д〉.

The discrete logarithm problem is conjectured to be hard (that is, no polynomial-time
algorithm exists for the problem) in certain kinds of cyclic groups.

14.2 Di�ie-Hellman Key Agreement

Key agreement refers to the problem of establishing a private channel using public com-
munication. Suppose Alice & Bob have never spoken before and have no shared secrets.
By exchanging publicmessages (i.e., that can be seen by any external observer), they would
like to establish a secret that is known only to the two of them.

The Di�e-Hellman protocol is such a key-agreement protocol, and it was the �rst
published instance of public-key cryptography:

Construction 14.3

(Di�ie-Hellman)

Both parties agree (publicly) on a cyclic group G with generator д. Let n = |G|. All exponen-
tiations are with respect to the group operation in G.

1. Alice chooses a ← Zn . She sends A = дa to Bob.

2. Bob chooses b ← Zn . He sends B = дb to Alice.

3. Bob locally outputs K := Ab . Alice locally outputs K := Ba .

Alice Bob
a ← Zn

b ← Zn

A = дa

B = дb

return Ba return Ab

By substituting and applying standard rules of exponents, we see that both parties
output a common value, namely K = дab ∈ G.

Defining Security for Key Agreement

Executing a key agreement protocol leaves two artifacts behind. First, we have the col-
lection of messages that are exchanged between the two parties. We call this collection a
transcript. We envision two parties executing a key agreement protocol in the presence
of an eavesdropper, and hence we imagine that the transcript is public. Second, we have
the key that is output by the parties, which is private.

255

Draft: January 3, 2021 CHAPTER 14. DIFFIE-HELLMAN KEY AGREEMENT

To de�ne security of key agreement, we would like to require that the transcript leaks
no (useful) information to the eavesdropper about the key. There are a few ways to ap-
proach the de�nition:

I We could require that it is hard to compute the key given the transcript. However,
this turns out to be a rather weak de�nition. For example, it does not rule out the
possibility that an eavesdropper could guess the �rst half of the bits of the key.

I We could require that the key is pseudorandom given the transcript. This is a better
de�nition, and the one we use. To formalize this idea, we de�ne two libraries. In both
libraries the adversary / calling program can obtain the transcript of an execution
of the key agreement protocol. In one library the adversary obtains the key that
resulted from the protocol execution, while in the other library the adversary obtains
a totally unrelated key (chosen uniformly from the set Σ.K of possible keys).

Definition 14.4

(KA security)

Let Σ be a key-agreement protocol. We write Σ.K for the keyspace of the protocol (i.e., the
set of possible keys it produces). We write (t ,K) ← execprot(Σ) to denote the process of
executing the protocol between two honest parties, where t denotes the resulting transcript, and
K is resulting key. Note that this process is randomized, and that K is presumably correlated
to t .

We say that Σ is secure if LΣ
ka-real

∼∼∼ L
Σ
ka-rand

, where:

LΣ
ka-real

qery():
(t ,K) ← execprot(Σ)
return (t ,K)

LΣ
ka-rand

qery():
(t ,K) ← execprot(Σ)
K ′← Σ.K
return (t ,K ′)

14.3 Decisional Di�ie-Hellman Problem

The Di�e Hellman protocol is parameterized by the choice of cyclic groupG (and genera-
tor д). Transcripts in the protocol consist of (дa ,дb), where a and b are chosen uniformly.
The key corresponding to such a transcript is дab . The set of possible keys is the cyclic
group G.

Let us substitute the details of the Di�e-Hellman protocol into the KA security li-
braries. After simplifying, we see that the security of the Di�e Hellman protocol is equiv-
alent to the following statement:

LG
dh-real

qery():
a,b ← Zn
return (дa ,дb ,дab)

∼∼∼

LG
dh-rand

qery():
a,b, c ← Zn
return (дa ,дb ,дc)

We have renamed the libraries to Ldh-real and Ldh-rand. In Ldh-real the response to qery
corresponds to a DHKA transcript (дa ,дb) along with the corresponding “correct” key

256

Draft: January 3, 2021 CHAPTER 14. DIFFIE-HELLMAN KEY AGREEMENT

дab . The response in Ldh-rand corresponds to a DHKA transcript along with a completely
independent random key дc .

Definition 14.5

(DDH)

The decisional Di�e-Hellman (DDH) assumption in a cyclic group G is that LG
dh-real

∼∼∼

LG
dh-rand

(libraries de�ned above).

Since we have de�ned the DDH assumption by simply renaming the security de�nition
for DHKA, we immediately have:

Claim 14.6 The DHKA protocol is a secure KA protocol if and only if the DDH assumption is true for
the choice of G used in the protocol.

For Which Groups does the DDH Assumption Hold?

So far our only example of a cyclic group is Z∗p , where p is a prime. Although many
textbooks describe DHKA in terms of this cyclic group, it is not a good choice because the
DDH assumption is demonstrably false in Z∗p . To see why, we introduce a new concept:

Claim 14.7

(Euler criterion)

If p is a prime and X = дx ∈ Z∗p , then X
p−1
2 ≡p (−1)x .

Note that (−1)x is 1 if x is even and −1 if x is odd. So, while in general it is hard to
determine x given дx , Euler’s criterion says that it is possible to determine the parity of x
(i.e., whether x is even or odd) given дx .

To see how these observations lead to an attack against the Di�e-Hellman protocol,
consider the following attack:

A:
(A,B,C) ←qery()
return 1

?
≡p C

p−1
2

Roughly speaking, the adversary returns true whenever C can be written as д raised to
an even exponent. When linked to Ldh-real, C = дab where a and b are chosen uniformly.
Henceab will be even with probability 3/4. When linked toLdh-rand,C = дc for an indepen-
dent random c . So c is even only with probability 1/2. Hence the adversary distinguishes
the libraries with advantage 1/4.

Concretely, with this choice of group, the key дab will never be uniformly distributed.
See the exercises for a slightly better attack which correlates the key to the transcript.

Quadratic Residues. Several better choices of cyclic groups have been proposed in the
literature. Arguably the simplest one is based on the following de�nition:

Definition 14.8 A number X ∈ Z∗n is a quadratic residue modulo n if there exists some integer Y such that
Y 2 ≡n X . That is, if X can be obtained by squaring a number mod n. Let QR∗n ⊆ Z

∗
n denote

the set of quadratic residues mod n.

For our purposes it is enough to know that, when p is prime, QR∗p is a cyclic group with
(p − 1)/2 elements (see the exercises). When both p and (p − 1)/2 are prime, we call p a
safe prime (and call (p − 1)/2 a Sophie Germain prime). To the best of our knowledge the
DDH assumption is true in QR∗p when p is a safe prime.

257

Draft: January 3, 2021 CHAPTER 14. DIFFIE-HELLMAN KEY AGREEMENT

Exercises

14.1. Let p be an odd prime, as usual. Recall that QR∗p is the set of quadratic residues mod p
— that is, QR∗p = {x ∈ Z∗p | ∃y : x ≡p y2}. Show that if д is a primitive root of Z∗p then
〈д2〉 = QR∗p .

Note: This means that дa ∈ QR∗p if and only if a is even — and in particular, the choice of
generator д doesn’t matter.

14.2. Suppose N = pq where p and q are distinct primes. Show that |QR∗N | = |QR
∗
p | · |QR

∗
q |.

Hint:

Chineseremaindertheorem.

14.3. Suppose you are given X ∈ 〈д〉. You are allowed to choose any X ′ , X and learn the
discrete log of X ′ (with respect to base д). Show that you can use this ability to learn the
discrete log of X .

14.4. Let 〈д〉 be a cyclic group with n elements and generator д. Show that for all integers a, it
is true that дa = дa%n .

Note: As a result, 〈д〉 is isomorphic to the additive group Zn .

14.5. Letд be a primitive root of Z∗n . Recall that Z∗n hasϕ(n) elements. Show thatдa is a primitive
root of Z∗n if and only if gcd(a,ϕ(n)) = 1.

Note: It follows that, for every n, there are either 0 or ϕ(ϕ(n)) primitive roots mod n.

14.6. Let 〈д〉 be a cyclic group with n elements. Show that for all x ,y ∈ 〈д〉, it is true that
xn = yn .

Hint:

Everyx∈〈д〉canbewrittenasx=дaforsomeappropriatea.Whatis(дa)n?

14.7. (a) Prove the following variant of Lemma 4.10: Suppose you �x a value x ∈ ZN . Then
when sampling q =

√
2N values r1, . . . , rq uniformly from ZN , with probability at

least 0.6 there exist i , j with ri ≡N r j + x .

(b) Let д be a primitive root of Z∗p (for some prime p). Consider the problem of computing
the discrete log of X ∈ Z∗p with respect to д — that is, �nding x such that X ≡p дx .
Argue that if one can �nd integers r and s such that дr ≡p X ·дs then one can compute
the discrete log of X .

(c) Combine the above two observations to describe a O(√p)-time algorithm for the dis-
crete logarithm problem in Z∗p .

14.8. In an execution of DHKA, the eavesdropper observes the following values:

p = 461733370363 A = 114088419126
д = 2 B = 276312808197

What will be Alice & Bob’s shared key?

14.9. Explain what is wrong in the following argument:

258

Draft: January 3, 2021 CHAPTER 14. DIFFIE-HELLMAN KEY AGREEMENT

In Di�e-Hellman key agreement, Alice sendsA = дa and Bob sends B = дb . Their
shared key is дab . To break the scheme, the eavesdropper can simply compute
A · B = (дa)(дb) = дab .

14.10. LetG be a cyclic group withn elements and generatorд. Consider the following algorithm:

rand(A,B,C):
r , s, t ← Zn
A′ := Atдr

B′ := Bдs

C ′ := CtBrAstдr s

return (A′,B′,C ′)

Let DH = {(дa ,дb ,дab) ∈ G3 | a,b, ∈ Zn}.

(a) Suppose (A,B,C) ∈ DH . Show that the output distribution of rand(A,B,C) is the
uniform distribution over DH

(b) Suppose (A,B,C) < DH . Show that the output distribution of rand(A,B,C) is the
uniform distribution over G3.

? (c) Consider the problem of determining whether a given triple (A,B,C) is in the set DH .
Suppose you have an algorithm A that solves this problem on average slightly better
than chance. That is:

Pr[A(A,B,C) = 1] > 0.51 when (A,B,C) chosen uniformly in DH

Pr[A(A,B,C) = 0] > 0.51 when (A,B,C) chosen uniformly in G3

The algorithmA does not seem very useful if you have a particular triple (A,B,C) and
you really want to know whether it is in DH . You might have one of the triples for
which A gives the wrong answer, and there’s no real way to know.
Show how to construct a randomized algorithmA ′ such that: for every (A,B,C) ∈ G3:

Pr
[
A ′(A,B,C) = [(A,B,C)

?
∈ DH]

]
> 0.99

Here the input A,B,C is �xed and the probability is over the internal randomness in
A ′. So on every possible input, A ′ gives a very reliable answer.

to-do better attack against Z∗p instantiation of DHKA

259

15 Public-Key Encryption

So far, the encryption schemes that we’ve seen are symmetric-key schemes. The same
key is used to encrypt and decrypt. In this chapter we introduce public-key (sometimes
called asymmetric) encryption schemes, which use di�erent keys for encryption and de-
cryption. The idea is that the encryption key can be made public, so that anyone can send
an encryption to the owner of that key, even if the two users have never spoken before
and have no shared secrets. The decryption key is private, so that only the designated
owner can decrypt.

We modify the syntax of an encryption scheme in the following way. A public-key
encryption scheme consists of the following three algorithms:

KeyGen: Outputs a pair (pk, sk) where pk is a public key and sk is a private/secret key.

Enc: Takes the public key pk and a plaintextm as input, and outputs a ciphertext c .

Dec: Takes the secret key sk and a ciphertext c as input, and outputs a plaintextm.

We modify the correctness condition similarly. A public-key encryption scheme satis�es
correctness if, for allm ∈ M and all (pk, sk) ← KeyGen, we have Dec(sk, Enc(pk,m)) =m
(with probability 1 over the randomness of Enc).

15.1 Security Definitions

We now modify the de�nition of CPA security to �t the setting of public-key encryption.
As before, the adversary calls a challenge subroutine with two plaintexts — the di�er-
ence between the two libraries is which plaintext is actually encrypted. Of course, the
encryption operation now takes the public key.

Then the biggest change is that we would like to make the public key public. In other
words, the calling program should have a way to learn the public key (otherwise the library
cannot model a situation where the public key is known to the adversary). To do this, we
simply add another subroutine that returns the public key.

Definition 15.1 Let Σ be a public-key encryption scheme. Then Σ is secure against chosen-plaintext at-

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

tacks (CPA secure) if LΣ
pk-cpa-L

∼∼∼ L
Σ
pk-cpa-R

, where:

LΣ
pk-cpa-L

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
return Σ.Enc(pk,mL)

LΣ
pk-cpa-R

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
return Σ.Enc(pk,mR)

to-do Re-iterate how deterministic encryption still can’t be CPA-secure in the public-key setting.

Pseudorandom Ciphertexts

We can modify/adapt the de�nition of pseudorandom ciphertexts to public-key encryption
in a similar way:

Definition 15.2 Let Σ be a public-key encryption scheme. Then Σ has pseudorandom ciphertexts in the
presence of chosen-plaintext a�acks (CPA$ security) if LΣ

pk-cpa$-real

∼∼∼ L
Σ
pk-cpa$-rand

,
where:

LΣ
pk-cpa$-real

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(m ∈ Σ.M):
return Σ.Enc(pk,m)

LΣ
pk-cpa$-rand

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(m ∈ Σ.M):
c ← Σ.C
return c

As in the symmetric-key setting, CPA$ security (for public-key encryption) implies
CPA security:

Claim 15.3 Let Σ be a public-key encryption scheme. If Σ has CPA$ security, then Σ has CPA security.

The proof is extremely similar to the proof of the analogous statement for symmetric-
key encryption (Theorem 7.3), and is left as an exercise.

15.2 One-Time Security Implies Many-Time Security

So far, everything about public-key encryption has been directly analogous to what we’ve
seen about symmetric-key encryption. We now discuss a peculiar property that is di�erent
between the two settings.

261

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

In symmetric-key encryption, we saw examples of encryption schemes that are secure
when the adversary sees only one ciphertext, but insecure when the adversary sees more
ciphertexts. One-time pad is the standard example of such an encryption scheme.

Surprisingly, if a public-key encryption scheme is secure when the adversary sees just
one ciphertext, then it is also secure for many ciphertexts! In short, there is no public-key
one-time pad that is weaker than full-�edged public-key encryption — there is public-key
encryption or nothing.

To show this property formally, we �rst adapt the de�nition of one-time secrecy (Def-
inition 2.6) to the public-key setting. There is one small but important technical subtlety:
in De�nition 2.6 the encryption key is chosen at the last possible moment in the body of
challenge. This ensures that the key is local to this scope, and therefore each value of
the key is only used to encrypt one plaintext.

In the public-key setting, however, it turns out to be important to allow the adver-
sary to see the public key before deciding which plaintexts to encrypt. (This concern is
not present in the symmetric-key setting precisely because there is nothing public upon
which the adversary’s choice of plaintexts can depend.) For that reason, in the public-key
setting we must sample the keys at initialization time so that the adversary can obtain the
public key via getpk. To ensure that the key is used to encrypt only one plaintext, we
add a counter and a guard condition to challenge, so that it only responds once with a
ciphertext.

Definition 15.4 Let Σ be a public-key encryption scheme. Then Σ has one-time secrecy if LΣ
pk-ots-L

∼∼∼

LΣ
pk-ots-R

, where:

LΣ
pk-ots-L

(pk, sk) ← Σ.KeyGen

count := 0

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
count := count + 1
if count > 1: return null
return Σ.Enc(pk,mL)

LΣ
pk-ots-R

(pk, sk) ← Σ.KeyGen

count := 0

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
count := count + 1
if count > 1: return null
return Σ.Enc(pk,mR)

Claim 15.5 Let Σ be a public-key encryption scheme. If Σ has one-time secrecy, then Σ is CPA-secure.

Proof Suppose LΣ
pk-ots-L

∼∼∼ L
Σ
pk-ots-R

. Our goal is to show that LΣ
pk-cpa-L

∼∼∼ L
Σ
pk-cpa-R

. The proof
centers around the following hybrid libraryLhyb-h , which is designed to be linked to either

262

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

Lpk-ots-L or Lpk-ots-R:
Lhyb-h

count = 0
pk := getpk()

challenge(mL,mR ∈ Σ.M):
count := count + 1
if count < h :

return Σ.Enc(pk,mR)

elsif count = h :
return challenge′(mL,mR)

else:
return Σ.Enc(pk,mL)

Here the value h is an unspeci�ed value that will be a hard-coded constant, and
challenge′ (called by the “elsif” branch) and getpk refer to the subroutine in Lpk-ots-?.
Note that Lhyb-h is designed so that it only makes one call to challenge′ — in particular,
only when its own challenge subroutine is called for the h th time.

We now make a few observations:

Lhyb-1 � Lpk-ots-L ≡ Lpk-cpa-L: In both libraries, every call to challenge en-
crypts the left plaintext. In particular, the �rst
call to challenge in Lhyb-1 triggers the “elsif”
branch, so the challenge is routed to Lpk-ots-L,
which encrypts the left plaintext. In all other
calls to challenge, the “else” branch is trig-
gered and the left plaintext is encrypted explic-
itly.

Lhyb-h � Lpk-ots-R ≡ Lhyb-(h + 1) � Lpk-ots-L, for all h . In both of these libraries, the �rst h
calls to challenge encrypt the right plaintext,
and all subsequent calls encrypt the left plain-
text.

Lhyb-h � Lpk-ots-L

∼∼∼ Lhyb-h � Lpk-ots-R, for all h . This simply follows from the fact
that Lpk-ots-L

∼∼∼ Lpk-ots-R.

Lhyb-q � Lpk-ots-R ≡ Lpk-cpa-R, where q is the number of times the calling pro-
gram calls challenge. In particular, every call
to challenge encrypts the right plaintext.

Putting everything together, we have that:

Lpk-cpa-L ≡ Lhyb-1 � Lpk-ots-L

∼∼∼ Lhyb-1 � Lpk-ots-R

≡ Lhyb-2 � Lpk-ots-L

∼∼∼ Lhyb-2 � Lpk-ots-R

...

263

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

≡ Lhyb-q � Lpk-ots-L

∼∼∼ Lhyb-q � Lpk-ots-R

≡ Lpk-cpa-R,

and so Lpk-cpa-L

∼∼∼ Lpk-cpa-R. �

The reason this proof goes through for public-key encryption but not symmetric-key
encryption is that anyone can encrypt in a public-key scheme. In a symmetric-key scheme,
it is not possible to generate encryptions without the key. But in a public-key scheme, the
encryption key is public.

In more detail, the Lhyb-h library can indeed obtain pk from Lpk-ots-?. It therefore has
enough information to perform the encryptions for all calls to challenge. Indeed, you
can think of Lhyb-0 as doing everything that Lpk-cpa-L does, even though it doesn’t know
the secret key. We let Lhyb-h designate the h th call to challenge as a special one to be
handled by Lpk-ots-?. This allows us to change the h th encryption from usingmL tomR .

15.3 ElGamal Encryption

ElGamal encryption is a public-key encryption scheme that is based on DHKA.

Construction 15.6

(ElGamal)

The public parameters are a choice of cyclic group G with n elements and generator д.

M = G

C = G2

KeyGen:
sk := a ← Zn
pk := A := дa
return (pk, sk)

Enc(A,M ∈ G):
b ← Zn
B := дb
return (B,M · Ab)

Dec(a, (B,X)):
return X (Ba)−1

The scheme satis�es correctness, since for all M :

Dec(sk, Enc(pk,M)) = Dec(sk, (дb ,M · Ab))

= (M · Ab)((дb)a)−1

= M · (дab)(дab)−1 = M .

Security

Imagine an adversary who is interested in attacking an ElGamal scheme. This adversary
sees the public key A = дa and a ciphertext (дb ,M дab) go by. Intuitively, the Decisional
Di�e-Hellman assumption says that the value дab looks random, even to someone who
has seen дa and дb . Thus, the message M is masked with a pseudorandom group element
— as we’ve seen before, this is a lot like masking the message with a random pad as in
one-time pad. The only change here is that instead of the xor operation, we are using the
group operation in G.

More formally, we can prove the security of ElGamal under the DDH assumption:

Claim 15.7 If the DDH assumption in group G is true, then ElGamal in group G is CPA$-secure.

264

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

Proof It su�ces to show that ElGamal has pseudorandom ciphertexts when the calling program
sees only a single ciphertext. In other words, we will show that Lpk-ots$-real

∼∼∼ Lpk-ots$-rand,
where these libraries are the Lpk-cpa$-? libraries from De�nition 15.2 but with the single-
ciphertext restriction used in De�nition 15.4. It is left as an exercise to show that
Lpk-ots$-real

∼∼∼ Lpk-ots$-rand implies CPA$ security (which in turn implies CPA security);
the proof is very similar to that of Claim 15.5.

The sequence of hybrid libraries is given below:

Lpk-ots$-real

a ← Zn
A := дa
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
b ← Zn
B := дb
X := M · Ab

return (B,X)

The starting point is the
Lpk-ots$-real library, shown here
with the details of ElGamal �lled
in.

a ← Zn ; b ← Zn
A := дa ; B := дb ; C := Ab

count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
X := M · C
return (B,X)

The main body of qery com-
putes some intermediate values
B and Ab . But since those lines
are only reachable one time, it
does not change anything to pre-
compute them at initialization
time.

265

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

(A,B,C) ← dhqery()
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
X := M ·C
return (B,X)

�

Ldh-real

dhqery():
a,b ← Zn
return (дa ,дb ,дab)

We can factor out the genera-
tion of A,B,C in terms of the
Ldh-real library from the De-
cisional Di�e-Hellman security
de�nition (De�nition 14.5).

(A,B,C) ← dhqery()
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
X := M ·C
return (B,X)

�

Ldh-rand

dhqery():
a,b, c ← Zn
return (дa ,дb , дc)

Applying the security of DDH,
we can replace Ldh-real with
Ldh-rand.

a,b, c ← Zn
A := дa ; B := дb ; C := дc

count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
X := M ·C
return (B,X)

The call to dhqery has been in-
lined.

266

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

a ← Zn
A := дa
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
b, c ← Zn
B := дb ; C := дc

X := M ·C
return (B,X)

As before, since the main body of
qery is only reachable once, we
can move the choice of B and C
into that subroutine instead of at
initialization time.

Lpk-ots$-rand

a ← Zn
A := дa
count = 0

getpk():
return A

qery(M ∈ G):
count : count + 1
if count > 1: return null
b, x ← Zn
B := дb ; X := дx

return (B,X)

When b is sampled uniformly
from Zn , the expression B = дb

is a uniformly distributed ele-
ment of G. Also recall that when
C is a uniformly distributed el-
ement of G, then M · C is uni-
formly distributed — this is anal-
ogous to the one-time pad prop-
erty (see Exercise 2.5). Applying
this change gives the library to
the left.

In the �nal hybrid, the response to qery is a pair of uniformly distributed group
elements (B,X). Hence that library is exactly Lpk-ots$-rand, as desired. �

15.4 Hybrid Encryption

As a rule, public-key encryption schemes are much more computationally expensive than
symmetric-key schemes. Taking ElGamal as a representative example, computing дb in a
cryptographically secure cyclic group is considerably more expensive than one evaluation
of AES. As the plaintext data increases in length, the di�erence in cost between public-key
and symmetric-key techniques only gets worse.

A clever way to minimize the cost of public-key cryptography is to use a method
called hybrid encryption. The idea is to use the expensive public-key scheme to encrypt
a temporary key for a symmetric-key scheme. Then use the temporary key to (cheaply)
encrypt the large plaintext data.

267

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

To decrypt, one can use the decryption key of the public-key scheme to obtain the
temporary key. Then the temporary key can be used to decrypt the main payload.

Construction 15.8

(Hybrid Enc)

Let Σpub be a public-key encryption scheme, and let Σsym be a symmetric-key encryption
scheme, where Σsym.K ⊆ Σpub.M — that is, the public-key scheme is capable of encrypting
keys of the symmetric-key scheme.

Then we de�ne Σhyb to be the following construction:

M = Σsym.M

C = Σpub.C × Σsym.C

KeyGen:
(pk, sk) ← Σpub.KeyGen

return (pk, sk)

Enc(pk,m):
tk ← Σsym.KeyGen

cpub ← Σpub.Enc(pk, tk)
csym ← Σsym.Enc(tk,m)
return (cpub, csym)

Dec(sk, (cpub, csym)):
tk := Σpub.Dec(sk, cpub)

return Σsym.Dec(tk, csym)

Importantly, the message space of the hybrid encryption scheme is the message space of
the symmetric-key scheme (think of this as involving very long plaintexts), but encryption
and decryption involves expensive public-key operations only on a small temporary key
(think of this as a very short string).

The correctness of the scheme can be veri�ed via:

Dec(sk, Enc(pk,m)) = Dec

(
sk,

(
Σpub.Enc(pk, tk), Σsym.Enc(tk,m)

))
= Σsym.Dec

(
Σpub.Dec

(
sk, Σpub.Enc(pk, tk)

)
, Σsym.Enc(tk,m)

)
= Σsym.Dec

(
tk, Σsym.Enc(tk,m)

)
=m.

To show that hybrid encryption is a valid way to encrypt data, we prove that it provides
CPA security, when its two components have appropriate security properties:

Claim 15.9 If Σsym is a one-time-secret symmetric-key encryption scheme and Σpub is a CPA-secure public-
key encryption scheme, then the hybrid scheme Σhyb (Construction 15.8) is also a CPA-secure
public-key encryption scheme.

Note that Σsym does not even need to be CPA-secure. Intuitively, one-time secrecy
su�ces because each temporary key tk is used only once to encrypt just a single plaintext.

Proof As usual, our goal is to show thatLΣhyb

pk-cpa-L

∼∼∼ L
Σhyb

pk-cpa-R
, which we do in a standard sequence

of hybrids:

268

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

L
Σhyb

pk-cpa-L

(pk, sk) ← Σpub.KeyGen

getpk():
return pk

challenge(mL,mR):
tk ← Σsym.KeyGen

cpub ← Σpub.Enc(pk, tk)
csym ← Σsym.Enc(tk,mL)

return (cpub, csym)

The starting point is Lpk-cpa-L, shown here with the details
of Σhyb �lled in.

Our only goal is to somehow replacemL withmR . SincemL
is only used as a plaintext for Σsym, it is tempting to simply
apply the one-time-secrecy property of Σsym to argue that
mL can be replaced with mR . Unfortunately, this cannot
work because the key used for that ciphertext is tk , which
is used elsewhere. In particular, it is used as an argument
to Σpub.Enc.

However, using tk as the plaintext argument to Σpub.Enc should hide tk to the calling
program, if Σpub is CPA-secure. That is, the Σpub-encryption of tk should look like a Σpub-
encryption of some unrelated dummy value. More formally, we can factor out the call to
Σpub.Enc in terms of the Lpk-cpa-L library, as follows:

challenge(mL,mR):
tk ← Σsym.KeyGen

tk ′← Σsym.KeyGen

cpub ← challenge′(tk, tk ′)
csym ← Σsym.Enc(tk,mL)

return (cpub, csym)

�

L
Σpub

pk-cpa-L

(pk, sk) ← Σpub.KeyGen

getpk():
return pk

challenge′(tkL, tkR):
return Σpub.Enc(pk, tkL)

Here we have changed the variable names of the arguments of challenge′ to avoid un-
necessary confusion. Note also that challenge now chooses two temporary keys — one
which is actually used to encryptmL and one which is not used anywhere. This is because
syntactically we must have two arguments to pass into challenge′.

Now imagine replacingLpk-cpa-L withLpk-cpa-R and then inlining subroutine calls. The
result is:

(pk, sk) ← Σpub.KeyGen

getpk():
return pk

challenge(mL,mR):
tk ← Σsym.KeyGen

tk ′← Σsym.KeyGen

cpub ← Σpub.Enc(pk, tk ′)
csym ← Σsym.Enc(tk,mL)

return (cpub, csym)

At this point, it does now work to factor out the call to Σsym.Enc in terms of the Lots-L

library. This is because the key tk is not used anywhere else in the library. The result of

269

Draft: January 3, 2021 CHAPTER 15. PUBLIC-KEY ENCRYPTION

factoring out in this way is:

(pk, sk) ← Σpub.KeyGen

getpk():
return pk

challenge(mL,mR):
tk ′← Σsym.KeyGen

cpub ← Σpub.Enc(pk, tk ′)

csym ← challenge′(mL,mR)

return (cpub, csym)

�

L
Σsym

ots-L

challenge′(mL,mR):
tk ← Σsym.KeyGen

return Σsym.Enc(tk,mL)

At this point, we can replace Lots-L with Lots-R. After this change the Σsym-ciphertext
encrypts mR instead of mL . This is the “half-way point” of the proof, and the rest of the
steps are a mirror image of what has come before. In summary: we inline Lots-R, then
we apply CPA security to replace the Σpub-encryption of tk ′ with tk . The result is exactly
Lpk-cpa-R, as desired. �

Exercises

15.1. Prove Claim 15.3.

15.2. Show that a 2-message key-agreement protocol exists if and only if CPA-secure public-key
encryption exists.

In other words, show how to construct a CPA-secure encryption scheme from any 2-
message KA protocol, and vice-versa. Prove the security of your constructions.

15.3. (a) Suppose you are given an ElGamal encryption of an unknown plaintext M ∈ G. Show
how to construct a di�erent ciphertext that also decrypts to the same M .

(b) Suppose you are given two ElGamal encryptions, of unknown plaintexts M1,M2 ∈ G.
Show how to construct a ciphertext that decrypts to their product M1 ·M2.

15.4. Suppose you obtain two ElGamal ciphertexts (B1,C1), (B2,C2) that encrypt unknown plain-
texts M1 and M2. Suppose you also know the public key A and cyclic group generator д.

(a) What information can you infer about M1 and M2 if you observe that B1 = B2?

(b) What information can you infer about M1 and M2 if you observe that B1 = д · B2?

? (c) What information can you infer about M1 and M2 if you observe that B1 = (B2)
2?

270

> Index of Security Definitions

One-time uniform ciphertexts for symmetric-key encryption (De�nition 2.5):

LΣ
ots$-real

ctxt(m ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,m)
return c

LΣ
ots$-rand

ctxt(m ∈ Σ.M):
c ← Σ.C
return c

One-time secrecy for symmetric-key encryption (De�nition 2.6):

LΣ
ots-L

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,mL)

return c

LΣ
ots-R

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,mR)

return c

t-out-of-n secret sharing (De�nition 3.3):

LΣ
tsss-L

share(mL,mR ∈ Σ.M,U):
if |U | > Σ.t : return err

s ← Σ.Share(mL)

return {si | i ∈ U }

LΣ
tsss-R

share(mL,mR ∈ Σ.M,U):
if |U | > Σ.t : return err

s ← Σ.Share(mR)

return {si | i ∈ U }

Pseudorandom generator (De�nition 5.1):

LG
prg-real

qery():
s ← {0, 1}λ

return G(s)

LG
prg-rand

qery():
r ← {0, 1}λ+`

return r

Pseudorandom function (De�nition 6.1):

LF
prf-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}in):
return F (k,x)

LF
prf-rand

T := empty assoc. array

lookup(x ∈ {0, 1}in):
if T [x] unde�ned:
T [x] ← {0, 1}out

return T [x]

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 INDEX OF SECURITY DEFINITIONS

Pseudorandom permutation (De�nition 6.6):

LF
prp-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}blen):
return F (k,x)

LF
prp-rand

T := empty assoc. array

lookup(x ∈ {0, 1}blen):
if T [x] unde�ned:
T [x] ← {0, 1}blen \T .values

return T [x]

Strong pseudorandom permutation (De�nition 6.13):

LF
sprp-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}blen):
return F (k,x)

invlookup(y ∈ {0, 1}blen):
return F−1(k,y)

LF
sprp-rand

T ,Tinv := empty assoc. arrays

lookup(x ∈ {0, 1}blen):
if T [x] unde�ned:
y ← {0, 1}blen \T .values

T [x] := y; Tinv[y] := x
return T [x]

invlookup(y ∈ {0, 1}blen):
if Tinv[y] unde�ned:
x ← {0, 1}blen \Tinv.values

Tinv[y] := x ; T [x] := y
return Tinv[y]

CPA security for symmetric-key encryption (De�nition 7.1, Section 8.2):

LΣ
cpa-L

k ← Σ.KeyGen

eavesdrop(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mL)

return c

LΣ
cpa-R

k ← Σ.KeyGen

eavesdrop(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mR)

return c

CPA$ security for symmetric-key encryption (De�nition 7.2, Section 8.2):

LΣ
cpa$-real

k ← Σ.KeyGen

challenge(m ∈ Σ.M):
c := Σ.Enc(k,m)
return c

LΣ
cpa$-rand

challenge(m ∈ Σ.M):
c ← Σ.C(|m |)
return c

272

Draft: January 3, 2021 INDEX OF SECURITY DEFINITIONS

CCA security for symmetric-key encryption (De�nition 9.1):

LΣ
cca-L

k ← Σ.KeyGen

S := ∅

eavesdrop(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mL)

S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return Σ.Dec(k, c)

LΣ
cca-R

k ← Σ.KeyGen

S := ∅

eavesdrop(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mR)

S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return Σ.Dec(k, c)

CCA$ security for symmetric-key encryption (De�nition 9.2):

LΣ
cca$-real

k ← Σ.KeyGen

S := ∅

ctxt(m ∈ Σ.M):
c := Σ.Enc(k,m)
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return Σ.Dec(k, c)

LΣ
cca$-rand

k ← Σ.KeyGen

S := ∅

ctxt(m ∈ Σ.M):
c ← Σ.C(|m |)
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S return err

return Σ.Dec(k, c)

MAC (De�nition 10.2):

LΣ
mac-real

k ← Σ.KeyGen

gettag(m ∈ Σ.M):
return Σ.MAC(k,m)

checktag(m ∈ Σ.M, t):

return t
?
= Σ.MAC(k,m)

LΣ
mac-fake

k ← Σ.KeyGen

T := ∅

gettag(m ∈ Σ.M):
t := Σ.MAC(k,m)
T := T ∪ {(m, t)}
return t

checktag(m ∈ Σ.M, t):

return (m, t)
?
∈ T

273

Draft: January 3, 2021 INDEX OF SECURITY DEFINITIONS

Collision resistance (De�nition 11.1):

LH
cr-real

s ← {0, 1}λ

getsalt():
return s

test(x ,x ′ ∈ {0, 1}∗):
if x , x ′ and H (s,x) = H (s,x ′): return true

return false

LH
cr-fake

s ← {0, 1}λ

getsalt():
return s

test(x ,x ′ ∈ {0, 1}∗):
return false

Digital signatures (De�nition 13.6):

LΣ
sig-real

(vk, sk) ← Σ.KeyGen

getvk():
return vk

getsig(m):
return Σ.Sign(sk,m)

versig(m,σ):
return Σ.Ver(vk,m,σ)

LΣ
sig-fake

(vk, sk) ← Σ.KeyGen

S := ∅

getvk():
return vk

getsig(m):
σ := Σ.Sign(sk,m)
S := S ∪ {(m,σ)}
return σ

versig(m,σ):

return (m,σ)
?
∈ S

Key agreement (De�nition 14.4):

LΣ
ka-real

qery():
(t ,K) ← execprot(Σ)
return (t ,K)

LΣ
ka-rand

qery():
(t ,K) ← execprot(Σ)
K ′← Σ.K
return (t ,K ′)

Decisional Di�e-Hellman assumption (De�nition 14.5):

LG
dh-real

qery():
a,b ← Zn
return (дa ,дb ,дab)

LG
dh-rand

qery():
a,b, c ← Zn
return (дa ,дb ,дc)

274

Draft: January 3, 2021 INDEX OF SECURITY DEFINITIONS

CPA security for public-key encryption (De�nition 15.1):

LΣ
pk-cpa-L

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
return Σ.Enc(pk,mL)

LΣ
pk-cpa-R

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
return Σ.Enc(pk,mR)

CPA$ security for public-key encryption (De�nition 15.2):

LΣ
pk-cpa$-real

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(m ∈ Σ.M):
return Σ.Enc(pk,m)

LΣ
pk-cpa$-rand

(pk, sk) ← Σ.KeyGen

getpk():
return pk

challenge(m ∈ Σ.M):
c ← Σ.C
return c

One-time secrecy for public-key encryption (De�nition 15.4):

LΣ
pk-ots-L

(pk, sk) ← Σ.KeyGen

count := 0

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
count := count + 1
if count > 1: return null
return Σ.Enc(pk,mL)

LΣ
pk-ots-R

(pk, sk) ← Σ.KeyGen

count := 0

getpk():
return pk

challenge(mL,mR ∈ Σ.M):
count := count + 1
if count > 1: return null
return Σ.Enc(pk,mR)

275

	Review of Concepts & Notation
	Logs & Exponents
	Modular Arithmetic
	Strings
	Functions
	Probability
	Notation in Pseudocode
	Asymptotics (Big-O)

	One-Time Pad & Kerckhoffs' Principle
	What Is [Not] Cryptography?
	Specifics of One-Time Pad

	The Basics of Provable Security
	How to Write a Security Definition
	Formalisms for Security Definitions
	How to Demonstrate Insecurity with Attacks
	How to Prove Security with The Hybrid Technique
	How to Compare/Contrast Security Definitions

	Secret Sharing
	Definitions
	A Simple 2-out-of-2 Scheme
	Polynomial Interpolation
	Shamir Secret Sharing
	to Visual Secret Sharing

	Basing Cryptography on Intractable Computations
	What Qualifies as a ``Computationally Infeasible'' Attack?
	What Qualifies as a ``Negligible'' Success Probability?
	Indistinguishability
	Birthday Probabilities & Sampling With/out Replacement

	Pseudorandom Generators
	Definitions
	Pseudorandom Generators in Practice
	Application: Shorter Keys in One-Time-Secret Encryption
	Extending the Stretch of a PRG
	to Applications: Stream Cipher & Symmetric Ratchet

	Pseudorandom Functions & Block Ciphers
	Definition
	PRFs vs PRGs; Variable-Hybrid Proofs
	Block Ciphers (Pseudorandom Permutations)
	Relating PRFs and Block Ciphers
	PRFs and Block Ciphers in Practice
	to Strong Pseudorandom Permutations

	Security Against Chosen Plaintext Attacks
	Limits of Deterministic Encryption
	Pseudorandom Ciphertexts
	CPA-Secure Encryption Based On PRFs

	Block Cipher Modes of Operation
	A Tour of Common Modes
	CPA Security and Variable-Length Plaintexts
	Security of OFB Mode
	Padding & Ciphertext Stealing

	Chosen Ciphertext Attacks
	Padding Oracle Attacks
	What Went Wrong?
	Defining CCA Security
	to A Simple CCA-Secure Scheme

	Message Authentication Codes
	Definition
	to A PRF is a MAC
	MACs for Long Messages
	Encrypt-Then-MAC

	Hash Functions
	Security Properties for Hash Functions
	Merkle-Damgård Construction
	Hash Functions vs. MACs: Length-Extension Attacks

	Authenticated Encryption & AEAD
	Definitions
	Achieving AE/AEAD
	Carter-Wegman MACs
	Galois Counter Mode for AEAD

	RSA & Digital Signatures
	``Dividing'' Mod n
	The RSA Function
	Digital Signatures
	Chinese Remainder Theorem
	The Hardness of Factoring N

	Diffie-Hellman Key Agreement
	Cyclic Groups
	Diffie-Hellman Key Agreement
	Decisional Diffie-Hellman Problem

	Public-Key Encryption
	Security Definitions
	One-Time Security Implies Many-Time Security
	ElGamal Encryption
	Hybrid Encryption

	Index of Security Definitions

